ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the Interactions between Dark Matter and Baryons from the X-ray Quantum Calorimetry Experiment

49   0   0.0 ( 0 )
 نشر من قبل Adrienne Erickcek
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the rocket-based X-ray Quantum Calorimetry (XQC) experiment was designed for X-ray spectroscopy, the minimal shielding of its calorimeters, its low atmospheric overburden, and its low-threshold detectors make it among the most sensitive instruments for detecting or constraining strong interactions between dark matter particles and baryons. We use Monte Carlo simulations to obtain the precise limits the XQC experiment places on spin-independent interactions between dark matter and baryons, improving upon earlier analytical estimates. We find that the XQC experiment rules out a wide range of nucleon-scattering cross sections centered around one barn for dark matter particles with masses between 0.01 and 10^5 GeV. Our analysis also provides new constraints on cases where only a fraction of the dark matter strongly interacts with baryons.

قيم البحث

اقرأ أيضاً

We present results based on Chandra observations of a large sample of 129 hot galaxy clusters. We measure the concentration parameter c_200, the dark mass M_200 and the baryonic mass content in all the objects of our sample, providing the largest dat aset of mass parameters for galaxy clusters in the redshift range z = 0.01 - 1.4. We confirm a that a tight correlation between c_200 and M_200, c propto M^a_vir /(1+z)^b with a = -0.56 +/- 0.15 and b =0.80 +/- 0.25 (68 per cent confidence limits), is present, in good agreement with the predictions from numerical simulations and previous observations. Fitting the mass profile with a generalized NFW model, we got the inner slope alpha, with alpha = 0.94 +/- 0.13. Finally, we show that the inner slope of the density profile, alpha correlates with the baryonic mass content, M_b : namely alpha is decreasing with increasing baryonic mass content.
If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the high-latitude gamma-ray flux resulting from dark matter decay for a wide range of channels and masses, including all contributions from inverse Compton scattering and accounting for the production and full evolution of cosmological electromagnetic cascades. We also make use of recent multi-wavelength analyses that constrain the astrophysical contributions to the IGRB, enabling us to more strongly restrict the presence any component arising from decaying dark matter. Over a wide range of decay channels and masses (from GeV to EeV and above), we derive stringent lower limits on the dark matters lifetime, generally in the range of $tau sim (1-5)times 10^{28}$ s.
New and complimentary constraints are placed on the spin-independent interactions of dark matter with baryonic matter. Similar to the Earth and other planets, the Moon does not have any major internal heat source. We derive constraints by comparing t he rate of energy deposit by dark matter annihilations in the Moon to 12 mW/m$^2$ as measured by the Apollo mission. For light dark matter of mass $mathcal{O}(10)$ GeV, we also examine the possibility of dark matter annihilations in the Moon limb. In this case, we place constraints by comparing the photon flux from such annihilations to that of the Fermi-LAT measurement of $10^{-4}$ MeV/cm$^2$s. This analysis excludes spin independent cross section $gtrsim 10^{-37}$ $rm{cm}^2$ for dark matter mass between 30 and 50 GeV.
We present new constraints on sub-GeV dark matter particles scattering off electrons in argon based on an analysis of ionization signal data from the DarkSide-50 detector.
Recent LHC data show hints of a new resonance in the diphoton distribution at an invariant mass of 750 GeV. Interestingly, this new particle might be both CP odd and play the role of a portal into the dark matter sector. Under these assumptions and m otivated by the fact that the requirement of $SU(2)_L$ invariance automatically implies the coupling of this alleged new resonance to $ZZ$ and $Zgamma$, we investigate the current and future constraints coming from the indirect searches performed through the neutrino telescope IceCube. We show that these constraints can be stronger than the ones from direct detection experiments if the dark matter mass is larger than a few hundred GeV. Furthermore, in the scenario in which the dark matter is a scalar particle, the IceCube data limit the cross section between the DM and the proton to values close to the predicted ones for natural values of the parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا