ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter Haloes of Chandra X-ray Galaxy Clusters and Baryons Effect

130   0   0.0 ( 0 )
 نشر من قبل Iurii Babyk Mr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results based on Chandra observations of a large sample of 129 hot galaxy clusters. We measure the concentration parameter c_200, the dark mass M_200 and the baryonic mass content in all the objects of our sample, providing the largest dataset of mass parameters for galaxy clusters in the redshift range z = 0.01 - 1.4. We confirm a that a tight correlation between c_200 and M_200, c propto M^a_vir /(1+z)^b with a = -0.56 +/- 0.15 and b =0.80 +/- 0.25 (68 per cent confidence limits), is present, in good agreement with the predictions from numerical simulations and previous observations. Fitting the mass profile with a generalized NFW model, we got the inner slope alpha, with alpha = 0.94 +/- 0.13. Finally, we show that the inner slope of the density profile, alpha correlates with the baryonic mass content, M_b : namely alpha is decreasing with increasing baryonic mass content.



قيم البحث

اقرأ أيضاً

We present a study of the relation between dark matter halo mass and the baryonic content of host galaxies, quantified via luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensin g and photometric data, obtained from the CFHT Legacy Survey. We employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4. We express the relationship between halo mass and baryonic observable as a power law. For the luminosity-halo mass relation we find a slope of 1.32+/-0.06 and a normalisation of 1.19+0.06-0.07x10^13 h70^-1 Msun for red galaxies, while for blue galaxies the best-fit slope is 1.09+0.20-0.13 and the normalisation is 0.18+0.04-0.05x10^13 h70^-1 Msun. Similarly, we find a best-fit slope of 1.36+0.06-0.07 and a normalisation of 1.43+0.11-0.08x10^13 h70^-1 Msun for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16x10^13 h70^-1 Msun. For red lenses, the fraction which are satellites tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2x10^9 h70^-2 Msun. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies. We also find that the halo model, while matching the lensing signal around red lenses well, is prone to over-predicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. [abridged]
We use numerical simulations to investigate how the statistical properties of dark matter (DM) haloes are affected by the baryonic processes associated with galaxy formation. We focus on how these processes influence the spin and shape of a large num ber of DM haloes covering a wide range of mass scales, from galaxies to clusters at redshifts zero and one, extending to dwarf galaxies at redshift two. The haloes are extracted from the OverWhelmingly Large Simulations, a suite of state-of-the-art high-resolution cosmological simulations run with a range of feedback prescriptions. We find that the median spin parameter in DM-only simulations is independent of mass, redshift and cosmology. At z=0 baryons increase the spin of the DM in the central region (<=0.25 r_200) by up to 30 per cent when feedback is weak or absent. This increase can be attributed to the transfer of angular momentum from baryons to the DM, but is no longer present at z=2. We also present fits to the mass dependence of the DM halo shape at both low and high redshift. At z=0 the sphericity (triaxiality) is negatively (positively) correlated with halo mass and both results are independent of cosmology. Interestingly, these mass-dependent trends are markedly weaker at z=2. While the cooling of baryons acts to make the overall DM halo more spherical, stronger feedback prescriptions tend to reduce the impact of baryons by reducing the central halo mass concentration. More generally, we demonstrate a strongly positive (negative) correlation between halo sphericity (triaxiality) and galaxy formation efficiency, with the latter measured using the central halo baryon fraction. In conclusion, our results suggest that the effects of baryons on the DM halo spin and shape are minor when the effects of cooling are mitigated, as required by realistic models of galaxy formation, although they remain significant for the inner halo.
(Abriged) Assuming that the hydrostatic equilibrium holds between the intracluster medium and the gravitational potential, we constrain the NFW profiles in a sample of 44 X-ray luminous galaxy clusters observed with XMM-Newton in the redshift range 0 .1-0.3. We evaluate several systematic uncertainties that affect our reconstruction of the X-ray masses. We measure the concentration c200, the dark mass M200 and the gas mass fraction within R500 in all the objects of our sample, providing the largest dataset of mass parameters for galaxy clusters in this redshift range. We confirm that a tight correlation between c200 and M200 is present and in good agreement with the predictions from numerical simulations and previous observations. When we consider a subsample of relaxed clusters that host a Low-Entropy-Core (LEC), we measure a flatter c-M relation with a total scatter that is lower by 40 per cent. From the distribution of the estimates of c200 and M200, with associated statistical (15-25%) and systematic (5-15%) errors, we use the predicted values from semi-analytic prescriptions calibrated through N-body numerical runs and measure sigma_8*Omega_m^(0.60+-0.03)= 0.45+-0.01 (at 2 sigma level, statistical only) for the subsample of the clusters where the mass reconstruction has been obtained more robustly, and sigma_8*Omega_m^(0.56+-0.04) = 0.39+-0.02 for the subsample of the 11 more relaxed LEC objects. With the further constraint from the fgas distribution in our sample, we break the degeneracy in the sigma_8-Omega_m plane and obtain the best-fit values sigma_8~1.0+-0.2 (0.75+-0.18 when the subsample of the more relaxed objects is considered) and Omega_m = 0.26+-0.01.
We present the first simulated galaxy clusters (M_200 > 10^14 Msun) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simul ations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
We present the radial distribution of the dark matter in two massive, X-ray luminous galaxy clusters, Abell~2142 and Abell~2319, and compare it with the quantity predicted as apparent manifestation of the baryonic mass in the context of the Emergent Gravity scenario, recently suggested from Verlinde (2016). Thanks to the observational strategy of the xmm Cluster Outskirt Programme (X-COP), using the X-ray emission mapped with xmm and the SZ signal in the Planck survey, we recover the gas density, temperature and thermal pressure profiles up to $sim R_{200}$, allowing to constrain at unprecedented level the total mass through the hydrostatic equilibrium equation. We show that, also including systematic uncertainties related to the X-ray based mass modelling, the apparent dark matter shows a radial profile that has a shape different from the traditional dark matter distribution, with larger discrepancies (by a factor 2--3) in the inner ($r<200$ kpc) clusters regions and a remarkable agreement only across $R_{500}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا