ترغب بنشر مسار تعليمي؟ اضغط هنا

The 750 GeV Diphoton excess, Dark Matter and Constraints from the IceCube experiment

222   0   0.0 ( 0 )
 نشر من قبل Davide Racco
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent LHC data show hints of a new resonance in the diphoton distribution at an invariant mass of 750 GeV. Interestingly, this new particle might be both CP odd and play the role of a portal into the dark matter sector. Under these assumptions and motivated by the fact that the requirement of $SU(2)_L$ invariance automatically implies the coupling of this alleged new resonance to $ZZ$ and $Zgamma$, we investigate the current and future constraints coming from the indirect searches performed through the neutrino telescope IceCube. We show that these constraints can be stronger than the ones from direct detection experiments if the dark matter mass is larger than a few hundred GeV. Furthermore, in the scenario in which the dark matter is a scalar particle, the IceCube data limit the cross section between the DM and the proton to values close to the predicted ones for natural values of the parameters.

قيم البحث

اقرأ أيضاً

We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.
We interpret the di-photon excess recently reported by the ATLAS and CMS collaborations as a new resonance arising from the sgoldstino scalar, which is the superpartner of the Goldstone mode of spontaneous supersymmetry breaking, the goldstino. The s goldstino is produced at the LHC via gluon fusion and decays to photons, with interaction strengths proportional to the corresponding gaugino masses over the supersymmetry breaking scale. Fitting the excess, while evading bounds from searches in the di-jet, $Zgamma$, $ZZ$ and $WW$ final states, selects the supersymmetry breaking scale to be a few TeV, and particular ranges for the gaugino masses. The two real scalars, corresponding to the CP-even and CP-odd parts of the complex sgoldstino, both have narrow widths, but their masses can be split of the order 10-30 GeV by electroweak mixing corrections, which could account for the preference of a wider resonance width in the current low-statistics data. In the parameter space under consideration, tree-level $F$-term contributions to the Higgs mass arise, in addition to the standard $D$-term contribution proportional to the $Z$-boson mass, which can significantly enhance the tree level Higgs mass.
Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the d ecays of the pair-produced constituents. In a previous paper (arXiv:1204.1119) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375 GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.
We propose an NMSSM scenario that can explain the excess in the diphoton spectrum at 750 GeV recently observed by ATLAS and CMS. We show that in a certain limit with a very light pseudoscalar one can reproduce the experimental results without invokin g exotic matter. The 750 GeV excess is produced by two resonant heavy Higgs bosons with masses ~750 GeV, that subsequently decay to two light pseudoscalars. Each of these decays to collimated photon pairs that appear as a single photon in the electromagnetic calorimeter. A mass gap between heavy Higgses mimics a large width of the 750 GeV peak. The production mechanism, containing a strong component via initial b quarks, ameliorates a possible tension with 8 TeV data compared to other production modes. We also discuss other constraints, in particular from low energy experiments. Finally, we discuss possible methods that could distinguish our proposal from other physics models describing the diphoton excess in the Run-II of the LHC.
The 2-years MESE IceCube events show a slightly excess in the energy range 10-100 TeV with a maximum local statistical significance of 2.3$sigma$, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested b y multi-messenger studies related to $p$-$p$ sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks and leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9$sigma$ for a Dark Matter interpretation of the IceCube low energy excess.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا