ﻻ يوجد ملخص باللغة العربية
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measures and covariant derivatives on this space. The covariant derivative can be expressed in terms of connections in the usual way giving rise to new degrees of freedom for noncommutative theories.
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge th
Electromagnetism, the strong and the weak interaction are commonly formulated as gauge theories in a Lagrangian description. In this paper we present an alternative formal derivation of U(1)-gauge theory in a manifestly covariant Hamilton formalism.
We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we
We consider linear star products on $R^d$ of Lie algebra type. First we derive the closed formula for the polydifferential representation of the corresponding Lie algebra generators. Using this representation we define the Weyl star product on the du
Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated