ﻻ يوجد ملخص باللغة العربية
We consider generalised pp-waves with purely axial torsion, which we previously showed to be new vacuum solutions of quadratic metric-affine gravity. Our analysis shows that classical pp-waves of parallel Ricci curvature should not be viewed on their own. They are a particular representation of a wider class of solutions, namely generalised pp-waves of parallel Ricci curvature. We compare our pp-waves with purely axial torsion to solutions of Einstein-Weyl theory, the classical model describing the interaction of gravitational and massless neutrino fields.
We construct new explicit vacuum solutions of quadratic metric-affine gravity. The approach of metric-affine gravity in using an independent affine connection produces a theory with 10+64 unknowns, which implies admitting torsion and possible nonmetr
In this paper we deal with quadratic metric-affine gravity, which we briefly introduce, explain and give historical and physical reasons for using this particular theory of gravity. Further, we introduce a generalisation of well known spacetimes, nam
We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant ($Lambda_c$) is non-zero. The possible
We extend the basic formalism of mimetic-metric-torsion gravity theory, in a way that the mimetic scalar field can manifest itself geometrically as the source of not only the trace mode of torsion, but also its axial (or, pseudo-trace) mode. Specific
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represen