ترغب بنشر مسار تعليمي؟ اضغط هنا

Axial torsion waves in metric-affine gravity

59   0   0.0 ( 0 )
 نشر من قبل Vedad Pasic Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct new explicit vacuum solutions of quadratic metric-affine gravity. The approach of metric-affine gravity in using an independent affine connection produces a theory with 10+64 unknowns, which implies admitting torsion and possible nonmetricity. Our spacetimes are generalisations of classical pp-waves, four-dimensional Lorentzian spacetimes which admit a nonvanishing parallel spinor field. We generalize this definition to metric compatible spacetimes with pp-metric and purely axial torsion. It has been suggested that one can interpret that the axial component of torsion as the Hodge dual of the electromagnetic vector potential. We compare these solutions with our previous results and other solutions of classical models describing the interaction of gravitational and neutrino fields.



قيم البحث

اقرأ أيضاً

91 - Damianos Iosifidis 2019
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
In this paper we deal with quadratic metric-affine gravity, which we briefly introduce, explain and give historical and physical reasons for using this particular theory of gravity. Further, we introduce a generalisation of well known spacetimes, nam ely pp-waves. A classical pp-wave is a 4-dimensional Lorentzian spacetime, which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. This definition was generalised in our previous work to metric compatible spacetimes with torsion and used to construct new explicit vacuum solutions of quadratic metric-affine gravity, namely generalised pp-waves of parallel Ricci curvature. The physical interpretation of these solutions we propose in this article is that they represent a conformally invariant metric-affine model for a massless elementary particle. We give a comparison with the classical model describing the interaction of gravitational and massless neutrino fields, namely Einstein-Weyl theory and construct pp-wave type solutions of this theory. We point out that generalised pp-waves of parallel Ricci curvature are very similar to pp-wave type solutions of the Einstein-Weyl model and therefore propose that our generalised pp-waves of parallel Ricci curvature represent a metric-affine model for the massless neutrino.
81 - Keigo Shimada , Katsuki Aoki , 2018
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations fo r the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
In this paper we review the Myrzakulov Gravity models (MG-N, with $mathrm{N = I, II, ldots, VIII}$) and derive their respective metric-affine generalizations (MAMG-N), discussing also their particular sub-cases. The field equations of the theories ar e obtained by regarding the metric tensor and the general affine connection as independent variables. We then focus on the case in which the function characterizing the aforementioned metric-affine models is linear and consider a Friedmann-Lema^{i}tre-Robertson-Walker background to study cosmological aspects and applications.
127 - Damianos Iosifidis 2018
This article presents a systematic way to solve for the Affine Connection in Metric-Affine Geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects project ive invariance. We then generalize the result for Metric-Affine f(R) Theories. Finally, we generalize even further and add an action (to the Einstein-Hilbert) that has an arbitrary dependence on the connection and its partial derivatives. We wrap up our results as three consecutive Theorems. We then apply our Theorems to some simple examples in order to illustrate how the procedure works and also discuss the cases of dynamical/non-dynamical connections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا