ترغب بنشر مسار تعليمي؟ اضغط هنا

PP-waves with Torsion - a Metric-affine Model for the Massless Neutrino

101   0   0.0 ( 0 )
 نشر من قبل Vedad Pasic Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we deal with quadratic metric-affine gravity, which we briefly introduce, explain and give historical and physical reasons for using this particular theory of gravity. Further, we introduce a generalisation of well known spacetimes, namely pp-waves. A classical pp-wave is a 4-dimensional Lorentzian spacetime, which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. This definition was generalised in our previous work to metric compatible spacetimes with torsion and used to construct new explicit vacuum solutions of quadratic metric-affine gravity, namely generalised pp-waves of parallel Ricci curvature. The physical interpretation of these solutions we propose in this article is that they represent a conformally invariant metric-affine model for a massless elementary particle. We give a comparison with the classical model describing the interaction of gravitational and massless neutrino fields, namely Einstein-Weyl theory and construct pp-wave type solutions of this theory. We point out that generalised pp-waves of parallel Ricci curvature are very similar to pp-wave type solutions of the Einstein-Weyl model and therefore propose that our generalised pp-waves of parallel Ricci curvature represent a metric-affine model for the massless neutrino.



قيم البحث

اقرأ أيضاً

We construct new explicit vacuum solutions of quadratic metric-affine gravity. The approach of metric-affine gravity in using an independent affine connection produces a theory with 10+64 unknowns, which implies admitting torsion and possible nonmetr icity. Our spacetimes are generalisations of classical pp-waves, four-dimensional Lorentzian spacetimes which admit a nonvanishing parallel spinor field. We generalize this definition to metric compatible spacetimes with pp-metric and purely axial torsion. It has been suggested that one can interpret that the axial component of torsion as the Hodge dual of the electromagnetic vector potential. We compare these solutions with our previous results and other solutions of classical models describing the interaction of gravitational and neutrino fields.
We consider generalised pp-waves with purely axial torsion, which we previously showed to be new vacuum solutions of quadratic metric-affine gravity. Our analysis shows that classical pp-waves of parallel Ricci curvature should not be viewed on their own. They are a particular representation of a wider class of solutions, namely generalised pp-waves of parallel Ricci curvature. We compare our pp-waves with purely axial torsion to solutions of Einstein-Weyl theory, the classical model describing the interaction of gravitational and massless neutrino fields.
We deal with quadratic metric-affine gravity (QMAG), which is an alternative theory of gravity and present a new explicit representation of the field equations of this theory. In our previous work we found new explicit vacuum solutions of QMAG, namel y generalised pp-waves of parallel Ricci curvature with purely tensor torsion. Here we do not make any assumptions on the properties of torsion and write down our field equations accordingly. We present a review of research done thus far by several authors in finding new solutions of QMAG and different approaches in generalising pp-waves. We present two conjectures on the new types of solutions of QMAG which the ansatz presented in this paper will hopefully enable us to prove.
91 - Damianos Iosifidis 2019
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
We study the phase space dynamics of the non-minimally coupled Metric-Scalar-Torsion model in both Jordan and Einstein frames. We specifically check for the existence of critical points which yield stable solutions representing the current state of a ccelerated expansion of the universe fuelled by the Dark Energy. It is found that such solutions do indeed exist, subject to constraints on the free model parameter. In fact the evolution of the universe at these stable critical points exactly matches the evolution given by the cosmological solutions we found analytically in our previous work on the subject.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا