ﻻ يوجد ملخص باللغة العربية
We extend the basic formalism of mimetic-metric-torsion gravity theory, in a way that the mimetic scalar field can manifest itself geometrically as the source of not only the trace mode of torsion, but also its axial (or, pseudo-trace) mode. Specifically, we consider the mimetic field to be (i) coupled explicitly to the well-known Holst extension of the Riemann-Cartan action, and (ii) identified with the square of the associated Barbero-Immirzi field, which is presumed to be a pseudo-scalar. The conformal symmetry originally prevalent in the theory would still hold, as the associated Cartan transformations do not affect the torsion pseudo-trace, and hence the Holst term. Demanding the theory to preserve the spatial parity symmetry as well, we focus on a geometric unification of the cosmological dark sector, and show that a super-accelerating regime in the course of evolution of the universe is always feasible. From the observational perspective, assuming the cosmological evolution profile to be very close to that for $L$CDM, we further show that there could be a smooth crossing of the so-called phantom barrier at a low red-shift, however for a very restricted parametric domain. The extent of the super-acceleration have subsequently been ascertained by examining the evolution of the relevant torsion parameters.
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-tra
We construct new explicit vacuum solutions of quadratic metric-affine gravity. The approach of metric-affine gravity in using an independent affine connection produces a theory with 10+64 unknowns, which implies admitting torsion and possible nonmetr
We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions, the setup is free from the ghost and gradient instabilities while it hosts a
In this paper we investigate the so called phantom barrier crossing issue in a cosmological model based in the scalar-tensor theory with non-minimal derivative coupling to the Einsteins tensor. Special attention will be paid to the physical bounds on
We study the phase space dynamics of the non-minimally coupled Metric-Scalar-Torsion model in both Jordan and Einstein frames. We specifically check for the existence of critical points which yield stable solutions representing the current state of a