ﻻ يوجد ملخص باللغة العربية
We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant ($Lambda_c$) is non-zero. The possible presence of an aligned pure radiation field is also assumed. These space-times generalise the known vacuum solutions of type N with arbitrary $Lambda_c$ and type III with $Lambda_c=0$. It is shown that there are two, one and three distinct classes of solutions when $Lambda_c$ is respectively zero, positive and negative. The wave surfaces are plane, spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter backgrounds respectively, and the structure of the family of wave surfaces in the background space-time is described. The weak singularities which occur in these space-times are interpreted in terms of envelopes of the wave surfaces.
We consider generalised pp-waves with purely axial torsion, which we previously showed to be new vacuum solutions of quadratic metric-affine gravity. Our analysis shows that classical pp-waves of parallel Ricci curvature should not be viewed on their
Ehlers-Kundt conjecture is a physical assertion about the fundamental role of plane waves for the description of gravitational waves. Mathematically, it becomes equivalent to a problem on the Euclidean plane ${mathbb R}^2$ with a very simple formulat
Kundt spacetimes are of great importance in general relativity in 4 dimensions and have a number of topical applications in higher dimensions in the context of string theory. The degenerate Kundt spacetimes have many special and unique mathematical p
Vacuum gravitational fields invariant for a non Abelian Lie algebra generated by two Killing fields whose commutator is light-like are analyzed. It is shown that they represent nonlinear gravitational waves obeying to two nonlinear superposition laws
A pseudo-Riemannian manifold is called CSI if all scalar polynomial invariants constructed from the curvature tensor and its covariant derivatives are constant. In the Lorentzian case, the CSI spacetimes have been studied extensively due to their app