حقق التطورات الحديثة في أنظمة NLP، ولا سيما النموذج الاحتياطي والأصلون، نجاحا كبيرا في الدقة التنبؤية. ومع ذلك، عادة ما لا يتم معايرة هذه الأنظمة بشكل جيد بسبب عدم اليقين خارج الصندوق. تم اقتراح العديد من طرق إعادة المعاير في الأدبيات لتحديد حالة عدم اليقين التنبؤية ونواتج النماذج المعايرة، بدرجات متفاوتة من التعقيد. في هذا العمل، نقدم دراسة منهجية لبعض هذه الأساليب. التركيز على مهمة تصنيف النص ونماذج اللغة الكبيرة المسبقة مسبقا، نظرا لأول مرة أن العديد من النماذج الفعلية غير معايرت بشكل جيد خارج المربع، خاصة عندما تأتي البيانات من إعدادات خارج المجال. بعد ذلك، قارنا فعالية بعض أساليب إعادة المعايير المستخدمة على نطاق واسع (مثل الكفرات، تحجيم درجة الحرارة). بعد ذلك، نوضح تجريبيا اتصالا بين التقطير والمعايرة. نعتبر تقطير مصطلح تنظيمي يشجع نموذج الطالب على إخراج الشكوك التي تتناسب مع نموذج المعلمين. بهذه البصيرة، نطور أساليب إعادة المعايير البسيطة القائمة على التقطير دون أي تكلفة إضافية لاستنتاج الاستدلال. نظهر على معيار الغراء أن أساليبنا البسيطة يمكن أن تحقق أداء المعايرة المنافسة خارج المجال (OOD) W.R.T. مناهج أكثر تكلفة. أخيرا، ندرج ablations لفهم فائدة مكونات أسلوبنا المقترح وفحص قابلية نقل المعايرة عبر التقطير.
Recent advances in NLP systems, notably the pretraining-and-finetuning paradigm, have achieved great success in predictive accuracy. However, these systems are usually not well calibrated for uncertainty out-of-the-box. Many recalibration methods have been proposed in the literature for quantifying predictive uncertainty and calibrating model outputs, with varying degrees of complexity. In this work, we present a systematic study of a few of these methods. Focusing on the text classification task and finetuned large pretrained language models, we first show that many of the finetuned models are not well calibrated out-of-the-box, especially when the data come from out-of-domain settings. Next, we compare the effectiveness of a few widely-used recalibration methods (such as ensembles, temperature scaling). Then, we empirically illustrate a connection between distillation and calibration. We view distillation as a regularization term encouraging the student model to output uncertainties that match those of a teacher model. With this insight, we develop simple recalibration methods based on distillation with no additional inference-time cost. We show on the GLUE benchmark that our simple methods can achieve competitive out-of-domain (OOD) calibration performance w.r.t. more expensive approaches. Finally, we include ablations to understand the usefulness of components of our proposed method and examine the transferability of calibration via distillation.
المراجع المستخدمة
https://aclanthology.org/
كشف الجانب هو مهمة أساسية في التعدين في الرأي.تستخدم الأشغال السابقة كلمات البذور إما كعظمون من نماذج الموضوع، كمراسين لتوجيه تعلم الجوانب، أو كميزات من صفوف الأنفاق.تقدم هذه الورقة طريقة رواية متشرفة ضعيفة لاستغلال كلمات البذور للكشف عن الجانب بناء
توفر هذه الورقة لمحة عامة عن مهمة تصنيف سياق Citted Citted 2021 3c.تم تنظيم الطبعة الثانية من المهمة المشتركة كجزء من ورشة العمل الثانية بشأن معالجة الوثائق العلمية (SDP 2021).تتكون المهمة من اثنين من المهام الفرعية: تصنيف الاستشهادات بناء على الغرض
البيانات بشكل عام ترميز التحيزات البشرية بشكل افتراضي؛ إن إدراك هذه بداية جيدة، والبحث حول كيفية التعامل معها مستمر. يتم استخدام مصطلح التحيز على نطاق واسع في سياقات مختلفة في أنظمة NLP. في بحثنا، يكون التركيز محددا للتحيزات مثل النوع الاجتماعي والعن
تقدم هذه الورقة نتائج المهام المشتركة من ورشة العمل الثامنة حول الترجمة الآسيوية (WAT2021).بالنسبة إلى Wat2021، شارك 28 فريقا في المهام المشتركة وتقديم 24 فريقا نتائج ترجمةهم للتقييم البشري.كما قبلنا أيضا 5 أوراق بحثية.تم تقديم حوالي 2،100 نتائج ترجم
في هذه الورقة، نقدم المهمة المشتركة ESPR4NLP-2021 على تقدير الجودة القادم.بالنظر إلى زوج ترجمة من المصدر، فإن هذه المهمة المشتركة لا تتطلب فقط توفير درجة على مستوى الجملة تشير إلى الجودة الشاملة للترجمة، ولكن أيضا لشرح هذه النقاط عن طريق تحديد الكلما