ترغب بنشر مسار تعليمي؟ اضغط هنا

نظرة عامة على الإنصاف في البيانات - إلقاء الضوء على التحيز في خط أنابيب البيانات

An Overview of Fairness in Data -- Illuminating the Bias in Data Pipeline

279   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

البيانات بشكل عام ترميز التحيزات البشرية بشكل افتراضي؛ إن إدراك هذه بداية جيدة، والبحث حول كيفية التعامل معها مستمر. يتم استخدام مصطلح التحيز على نطاق واسع في سياقات مختلفة في أنظمة NLP. في بحثنا، يكون التركيز محددا للتحيزات مثل النوع الاجتماعي والعنصرية والدين والوجهات الديمغرافية وغيرها من الآراء عند التحيزات التي تسود في أنظمة معالجة النصوص مسؤولة عن تمييز السكان المحددين بشكل منهجي، وهي ليست أخلاقية في NLP. تؤدي هذه التحيزات إلى تفاقم عدم المساواة والتنوع وإدراج السكان المحددين أثناء الاستفادة من تطبيقات NLP. تستخدم الأدوات والتكنولوجيا على المستوى المتوسط ​​بيانات متحيزة، ونقل أو تضخيم هذا التحيز إلى تطبيقات المصب. ومع ذلك، لا يكفي أن تكون كافية، محايدة بين الجنسين وحدها عند تصميم تكنولوجيا غير متحيزة - بدلا من ذلك، يجب أن نأخذ جهدا واعيا من خلال تصميم إطار موحد لقياس وتحيز التحيز. في هذه الورقة، نوصي بستة تدابير وقياس زيادة واحدة بناء على ملاحظات التحيز في البيانات والشروح والتمثيلات النصية وتقنيات الدخل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حقق التطورات الحديثة في أنظمة NLP، ولا سيما النموذج الاحتياطي والأصلون، نجاحا كبيرا في الدقة التنبؤية. ومع ذلك، عادة ما لا يتم معايرة هذه الأنظمة بشكل جيد بسبب عدم اليقين خارج الصندوق. تم اقتراح العديد من طرق إعادة المعاير في الأدبيات لتحديد حالة عدم اليقين التنبؤية ونواتج النماذج المعايرة، بدرجات متفاوتة من التعقيد. في هذا العمل، نقدم دراسة منهجية لبعض هذه الأساليب. التركيز على مهمة تصنيف النص ونماذج اللغة الكبيرة المسبقة مسبقا، نظرا لأول مرة أن العديد من النماذج الفعلية غير معايرت بشكل جيد خارج المربع، خاصة عندما تأتي البيانات من إعدادات خارج المجال. بعد ذلك، قارنا فعالية بعض أساليب إعادة المعايير المستخدمة على نطاق واسع (مثل الكفرات، تحجيم درجة الحرارة). بعد ذلك، نوضح تجريبيا اتصالا بين التقطير والمعايرة. نعتبر تقطير مصطلح تنظيمي يشجع نموذج الطالب على إخراج الشكوك التي تتناسب مع نموذج المعلمين. بهذه البصيرة، نطور أساليب إعادة المعايير البسيطة القائمة على التقطير دون أي تكلفة إضافية لاستنتاج الاستدلال. نظهر على معيار الغراء أن أساليبنا البسيطة يمكن أن تحقق أداء المعايرة المنافسة خارج المجال (OOD) W.R.T. مناهج أكثر تكلفة. أخيرا، ندرج ablations لفهم فائدة مكونات أسلوبنا المقترح وفحص قابلية نقل المعايرة عبر التقطير.
تعتبر خلط التعليمات البرمجية ظاهرة خلط الكلمات والعبارات من لغتين أو أكثر في كلام واحد من الكلام والنص.نظرا للتنوع اللغوي العالي، يعرض خلط التعليمات البرمجية العديد من التحديات في تقييم مهام توليد اللغة الطبيعية القياسية (NLG).تعمل العديد من المقاييس الشعبية على نطاق واسع بشكل سيء بمهام NLG المختلطة من التعليمات البرمجية.لمعالجة هذا التحدي، نقدم حصة خط أنابيب التقييم المعتمدة بشكل كبير يحسن ارتباطا كبيرا بين مقاييس التقييم والأحكام البشرية على النص المزج العام الذي تم إنشاؤه.كحالة للاستخدام، نوضح أداء الفحص على جمل Hinglish التي تم إنشاؤها بواسطة الماكينات (خلط الكود باللغات الهندية والإنجليزية) من The Hinge Corpus.يمكننا تمديد استراتيجية التقييم المقترحة إلى أزواج لغة مختلطة من التعليمات البرمجية، ومهام NLG، ومقاييس التقييم مع الحد الأدنى من أي جهد.
تقدم هذه الورقة نتائج المهام المشتركة من ورشة العمل الثامنة حول الترجمة الآسيوية (WAT2021).بالنسبة إلى Wat2021، شارك 28 فريقا في المهام المشتركة وتقديم 24 فريقا نتائج ترجمةهم للتقييم البشري.كما قبلنا أيضا 5 أوراق بحثية.تم تقديم حوالي 2،100 نتائج ترجم ة إلى خادم التقييم التلقائي، وتم تقييم التقديمات المختارة يدويا.
مع سرعة البحوث المتزايدة بشكل مفيد والحجم المرتفع للاتصال العلمي، يواجه العلماء مهمة شاقة. ليس فقط يجب عليهم مواكبة الأدبيات المتزايدة في مجالاتهم ذات الصلة، كما يحتاج العلماء بشكل متزايد إلى إعادة صياغة العلوم الزائفة والإضاءة. تحفز هذه الاحتياجات ت ركيزا متزايدا على الأساليب الحسابية لتعزيز البحث والتلخيص وتحليل الوثائق العلمية. ومع ذلك، فإن خيوط البحث المختلفة بشأن معالجة الوثائق العلمية تظل مجزأة. للوصول إلى مجتمع NLP و AI / ML الأوسع، بجميع الجهود الموزعة في هذا المجال، وتمكين الوصول المشترك إلى البحث المنشور، عقدنا ورشة العمل الثانية بشأن معالجة الوثائق العلمية (SDP) في Naacl 2021 كحدث افتراضي (HTTPS: //sdproc.org/2021/). تتألف ورشة عمل SDP من مسار أبحاث وثلاثة محادثات مدعوة وثلاث مهام مشتركة (LongsUMM 2021، SEXIVER، و 3C). تم توجيه البرنامج نحو تطبيق NLP واسترجاع المعلومات والتعدين البيانات للمستندات العلمية، مع التركيز على تحديد وحلول الحلول لفتح التحديات.
تمنح نماذج اللغة العصبية المدربة مسبقا أداء عال في مهام الاستدلال اللغوي (NLI).ولكن ما إذا كانوا يفهمون فعلا معنى التسلسلات المصنعة لا يزال غير واضح.نقترح جناح اختبار التشخيص الجديد الذي يسمح بتقييم ما إذا كانت مجموعة البيانات تشكل اختبارا جيدا لتقيي م النماذج معنى فهم القدرات.نحن على وجه التحديد تطبيق تحويلات الفساد التي تسيطر عليها إلى المعايير المستخدمة على نطاق واسع (MNLI و Anli)، والتي تنطوي على إزالة فئات الكلمات بأكملها وغالبا ما تؤدي إلى أزواج الجملة غير الحسية.إذا ظلت دقة النموذجية على البيانات التالفة مرتفعة، فمن المحتمل أن تحتوي مجموعة البيانات على تحيزات إحصائية ومصنوعات تصريفات توقع التنبؤ.عكسيا، يشير انخفاض كبير في الدقة النموذجية إلى أن مجموعة البيانات الأصلية توفر تحديا صحيحا لقدرات منطق النماذج.وبالتالي، يمكن أن تكون عناصر التحكم المقترحة لدينا بمثابة اختبار تحطم لتطوير بيانات عالية الجودة لمهام NLI.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا