ترغب بنشر مسار تعليمي؟ اضغط هنا

مناقشة حول تعميم المجال في نظام التحقق من مكبرات الصوت

Discussion on domain generalization in the cross-device speaker verification system

239   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نستخدم تعميم المجال لتحسين أداء نظام التحقق من مكبر الصوت عبر الأجهزة.استنادا إلى نظام التحقق من المتكلم التدريبي، نستخدم خوارزميات تعميم المجال لضبط المعلمات النموذجية.أولا، نستخدم DataSet Voxceleb2 لتدريب ECAPA-TDNN كنموذج أساسي.ثم استخدم مجموعة بيانات ChT-TDSV وخوارزميات تعميم المجال التالية لضبطها: Dann، CDNN، Coral Coral.اختبارات نظامنا المقترح 10 سيناريوهات مختلفة في مجموعة بيانات NSYSU-TDSV، بما في ذلك جهاز واحد وأجهزة متعددة.أخيرا، في سيناريو الأجهزة المتعددة، انخفض أفضل معدل خطأ على قدم المساواة من 18.39 في الأساس إلى 8.84.حقق بنجاح تحديد الهوية عبر الجهاز على نظام التحقق من مكبر الصوت.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن نصف تجربتنا مع توفير الترجمة التلقائية اللغة المنطوقة في وقت واحد لحدث مع الترجمة الفورية البشرية.نحن نقدم نظرة عامة مفصلة عن الأنظمة التي نستخدمها، مع التركيز على التوصيل البيني والقضايا التي يجلبها.نقدم أدواتنا لمراقبة خط الأنابيب وتطبيق الويب لتقديم نتائج خط أنابيب SLT لدينا للمستخدمين النهائيين.أخيرا، نناقش التحديات المختلفة التي واجهناها، حلولها الممكنة ونقترح تحسينات للنشر في المستقبل.
بالنسبة للأطفال، أدى النظام المدرب على جثة كبيرة من مكبرات الصوت الكبار أسوأ من النظام المدربين على جثة أصغر بكثير من خطاب الأطفال.هذا بسبب عدم تطابق الصوت بين التدريب واختبار البيانات.لالتقاط المزيد من التقلبات الصوتية، قامنا بتدريب نظام مشترك مع بي انات مختلطة من البالغين والأطفال.ينجذب النظام المشترك إلى أفضل أغاني للأطفال دون تدهور للبالغين.وبالتالي، فإن النظام الفردي المدرب مع البيانات المختلطة ينطبق على التحقق من السماعات لكل من البالغين والأطفال.
لقد تم الاعتراف بأهمية بناء المحللين الدلاليين الذين يمكن تطبيقهم على مجالات جديدة وإنشاء برامج غير مرئية في التدريب لفترة طويلة، وقد تم الاعتراف لفترة طويلة، وتصبح مجموعات البيانات اختبار الأداء خارج النطاق متاحة بشكل متزايد. ومع ذلك، فقد تم تخصيص ا هتمام ضئيل أو معدوني لتعلم الخوارزميات أو الأهداف التي تعزز تعميم المجال، حيث تعتمد جميع الأساليب الموجودة تقريبا على التعلم المعياري الإشرافي. في هذا العمل، نستخدم إطارا للتعلم من التعريف الذي يستهدف تعميم المجال الصفرية للتحليل الدلالي. نحن نطبق خوارزمية التدريب النموذجية المرجعية التي تحاكي تحليل اللقطة الصفرية من خلال بناء القطار الافتراضي ومجموعات الاختبار من مجالات Disfoint. يستحق الهدف التعلم عن الحدس الذي يجب عليه اتخاذ خطوات التدرج التي تعمل على تحسين أداء مجال المصدر أيضا على تحسين أداء المجال المستهدف، وبالتالي تشجيع المحلل المحلل على تعميم المجالات المستهدفة غير المرئية. النتائج التجريبية على (الإنجليزية) عن مجموعات البيانات العنكبوت والصينية الصينية تظهر أن هدف التعلم التلوي يعزز بشكل كبير أداء محلل الأساس.
نظرا لأن متوسط العمر المتوقع للشعب الصيني يرتفع، أصبحت مشاكل الرعاية الصحية للمسنين أكثر تنوعا، ويتزايد الطلب على الرعاية الطويلة الأجل أيضا.لذلك، كيفية مساعدة كبار السن لديهم نوعية جيدة للحياة والحفاظ على كرامتهم هو ما نحتاج إلى التفكير فيه.يعتزم هذ ا البحث استكشاف خصائص اللغة الطبيعية من الشيخوخة العاديين من خلال نموذج عميق.أولا، نجمع المعلومات من خلال مجموعات التركيز حتى يتمكن الشيوخ من التفاعل بشكل طبيعي مع المشاركين الآخرين في هذه العملية.ثم، من خلال نموذج ناقلات الكلمة ونموذج الانحدار، يتم إنشاء نموذج التنبؤ بالوظائف التنفيذية المستندة إلى بيانات الحوار للمساعدة في فهم مسار تدهور الوظيفة التنفيذية وإنشاء تحذير مبكر.
في حين أن الشبكات العصبية تنتج أداء حديثة في العديد من مهام NLP، إلا أنها تعتمد بشكل عام على المعلومات المعدنية، والتي تنقل بشكل سيئ بين المجالات. اقترحت الأعمال السابقة Delexicalization كشكل من أشكال تقطير المعرفة للحد من الاعتماد على القطع الأثرية المعجمية. ومع ذلك، فإن القضية غير المحتملة النقدية التي لا تزال تظل مقدار delexicalization للتطبيق: يساعد القليل على تقليل التجاوز، ولكن يتجاهل الكثير من المعلومات المفيدة. نقترح التعلم الجماعي، ونهج تقطير المعرفة والنموذجية للتحقق من الحقائق التي تتمتع بها نماذج الطلاب المتعددة إمكانية الوصول إلى وجهات نظر مختلفة من البيانات، ولكن يتم تشجيعها على التعلم من بعضها البعض من خلال خسائر الاتساق الزوجية. في العديد من التجارب عبر المجالات بين مجموعات بيانات التحقق من الحمى و FNC، نوضح أن نهجنا يتعلم أفضل استراتيجية Delexicalization لعملية البيانات التدريبية المعطاة، وتتفوق على المصنفين الحديثة الذين يعتمدون على البيانات الأصلية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا