بالنسبة للأطفال، أدى النظام المدرب على جثة كبيرة من مكبرات الصوت الكبار أسوأ من النظام المدربين على جثة أصغر بكثير من خطاب الأطفال.هذا بسبب عدم تطابق الصوت بين التدريب واختبار البيانات.لالتقاط المزيد من التقلبات الصوتية، قامنا بتدريب نظام مشترك مع بيانات مختلطة من البالغين والأطفال.ينجذب النظام المشترك إلى أفضل أغاني للأطفال دون تدهور للبالغين.وبالتالي، فإن النظام الفردي المدرب مع البيانات المختلطة ينطبق على التحقق من السماعات لكل من البالغين والأطفال.
For children, the system trained on a large corpus of adult speakers performed worse than a system trained on a much smaller corpus of children's speech. This is due to the acoustic mismatch between training and testing data. To capture more acoustic variability we trained a shared system with mixed data from adults and children. The shared system yields the best EER for children with no degradation for adults. Thus, the single system trained with mixed data is applicable for speaker verification for both adults and children.
المراجع المستخدمة
https://aclanthology.org/
في السنوات الأخيرة، يمكن لنظام توليف الكلام إنشاء خطاب بجودة الكلام العالية. ومع ذلك، لا يزال نظام النص إلى كلام متعدد الكلام (TTS) يتطلب كمية كبيرة من بيانات الكلام لكل مكبر صوت مستهدف. في هذه الدراسة، نود إنشاء نظام TTS متعدد المتكلم من خلال دمج وح
في طرازات اللغة عبر اللغات، تعيش تمثيلات للعديد من اللغات المختلفة في نفس المساحة. هنا، نحقق في العوامل اللغوية وغير اللغوية التي تؤثر على محاذاة على مستوى الجملة في نماذج اللغة المحددة مسبقا بين 101 لغة و 5،050 زوج لغة. باستخدام LASTE BERT-القائم عل
في هذه الورقة، نستخدم تعميم المجال لتحسين أداء نظام التحقق من مكبر الصوت عبر الأجهزة.استنادا إلى نظام التحقق من المتكلم التدريبي، نستخدم خوارزميات تعميم المجال لضبط المعلمات النموذجية.أولا، نستخدم DataSet Voxceleb2 لتدريب ECAPA-TDNN كنموذج أساسي.ثم ا
نقدم نظرة عامة على المهمة المشتركة السكري، التي قدمت في ورشة عمل المعالجة بالوثائق العلمية الثانية (SDP) في Naacl 2021. وفي هذه المهمة المشتركة، قدمت النظم مطالبة علمية وجزح من ملخصات البحث، وطلب تحديد المقالات التي تدعمهاأو دحض المطالبة وكذلك توفير
على الرغم من أن Word Adgeddings والمواضيع هي تمثيل تكميلي، إلا أن العديد من الأعمال السابقة استخدمت فقط Arestrained Word Areging في النمذجة الموضوعية (العصبية) لمعالجة Sparsity البيانات في نص قصير أو مجموعة صغيرة من المستندات. يعرض هذا العمل إطارا لل