ترغب بنشر مسار تعليمي؟ اضغط هنا

تشغيل نظام SLT معقدة مع مكبرات الصوت والمترجمين الفوريين البشري

Operating a Complex SLT System with Speakers and Human Interpreters

239   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نصف تجربتنا مع توفير الترجمة التلقائية اللغة المنطوقة في وقت واحد لحدث مع الترجمة الفورية البشرية.نحن نقدم نظرة عامة مفصلة عن الأنظمة التي نستخدمها، مع التركيز على التوصيل البيني والقضايا التي يجلبها.نقدم أدواتنا لمراقبة خط الأنابيب وتطبيق الويب لتقديم نتائج خط أنابيب SLT لدينا للمستخدمين النهائيين.أخيرا، نناقش التحديات المختلفة التي واجهناها، حلولها الممكنة ونقترح تحسينات للنشر في المستقبل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقدم نظاما لدعم الترجمة الفورية في مجالات محددة.سيتم تطوير النظام من خلال تآزر قوي بين الفنيين، معظمهم من الخبراء في كل من كل من الكلام ومعالجة النصوص والنص، والمستخدمين النهائيين، I.E. المترجمين الفوريين المحترفين الذين يحددون المتطلبات وسيقوم باختب ار المنتج النهائي.تم تحقيق بعض النتائج المشجعة الأولية على اختبارات القياسية التي تم جمعها بهدف قياس أداء المكونات الفردية للنظام بأكمله، وهي: التعرف التلقائي على الكلام (ASR) والاعتراف الكياري المسمى.
في هذه الورقة، نستخدم تعميم المجال لتحسين أداء نظام التحقق من مكبر الصوت عبر الأجهزة.استنادا إلى نظام التحقق من المتكلم التدريبي، نستخدم خوارزميات تعميم المجال لضبط المعلمات النموذجية.أولا، نستخدم DataSet Voxceleb2 لتدريب ECAPA-TDNN كنموذج أساسي.ثم ا ستخدم مجموعة بيانات ChT-TDSV وخوارزميات تعميم المجال التالية لضبطها: Dann، CDNN، Coral Coral.اختبارات نظامنا المقترح 10 سيناريوهات مختلفة في مجموعة بيانات NSYSU-TDSV، بما في ذلك جهاز واحد وأجهزة متعددة.أخيرا، في سيناريو الأجهزة المتعددة، انخفض أفضل معدل خطأ على قدم المساواة من 18.39 في الأساس إلى 8.84.حقق بنجاح تحديد الهوية عبر الجهاز على نظام التحقق من مكبر الصوت.
إن جودة أنظمة تبسيط النص الآلي بالكامل ليست جيدة بما يكفي للاستخدام في إعدادات العالم الحقيقي؛بدلا من ذلك، يتم استخدام التبسيط البشري.في هذه الورقة، ندرس كيفية تحسين تكلفة وجودة التبسيط البشري من خلال الاستفادة من الجماعة الجماعية.نقدم نهج الانصهار ا لجملة في الرسم البياني لزيادة التبسيط البشري ونهج إعادة النشر لكل من تحديد المبسط عالية الجودة والسماح باستهداف التبسيط بمستويات متفاوتة من البساطة.باستخدام DataSet Newsela (XU et al.، 2015) نظهر تحسينات متسقة على الخبراء في مستويات تبسيط مختلفة وتجد أن تبسيط الانصهار الجملة الإضافية تسمح بإخراج أبسط من التبسيط البشري وحدها.
إن القدرة على توليد أسئلة باللغة الطبيعية مع مستويات التعقيد التي تسيطر عليها مرغوب فيه للغاية لأنها توزع تطبيق تطبيق سؤال. في هذه الورقة، نقترح نموذجا من جيلات السؤال العصبي المرتعل من نهاية إلى نهج، مما يشتمل على مزيج من الخبراء (MOE) كمحدد قوالب ن اعمة لتحسين دقة مراقبة التعقيد ونوعية الأسئلة التي تم إنشاؤها. القوالب الناعمة تلتقط التشابه السؤال مع تجنب البناء باهظ الثمن للقوالب الفعلية. تقدم طريقتنا رواية ومقدر تعقيد عبر المجال لتقييم تعقيد سؤال، مع مراعاة المقطع والسؤال والإجابة وتفاعلاتها. تظهر النتائج التجريبية على مجموعات بيانات QA القياسية على أن نموذج QG الخاص بنا متفوقا على الأساليب الحديثة في كل من التقييم التلقائي واليدوي. علاوة على ذلك، فإن مقدر التعقيد لدينا أكثر دقة بكثير من خطوط الأساس في كلا من إعدادات المجال والخروج.
تنتج هذه التقارير الورقية من دراسة الاستنساخ التي نكررت فيها التقييم البشري لنظام توليد تقرير كرة القدم الهولندي باللغة الهولندية (Van der Lee et al.، 2017). تم تنفيذ العمل كجزء من المهمة المشتركة لإعادة التوبيخ بشأن استنساخ التقييمات البشرية في NLG، في المسار الصحيح (ورقة 1). نهدف إلى تكرار الدراسة الأصلية بالضبط، مع الفرق الرئيسي الذي تم استخدام مجموعة مختلفة من المقيمين. نحن تصف تصميم الدراسة، وتقديم النتائج من دراسة النسخ الأصلية، ثم قارن وتحليل الاختلافات بين مجموعتين من النتائج. بالنسبة لنتائج المعتديين الأولين من الطلاقة والوضوح، نجد أنه في كلتا الدراسات، تم تصنيف النظام بشكل أكبر من أجل الوضوح أكثر من الطلاقة، وكان الوضوح انحراف معياري أعلى. كانت تصنيفات الوضوح والطلاقة أعلى، وانحرافاتها المعيارية أقل، في دراسة الاستنساخ أكثر من الدراسة الأصلية من الهوامش الكبيرة. كان الوضوح درجة أعلى من الاستيلاء من الطلاقة، كما تقاس معامل الاختلاف. البيانات والرمز متاحة للجمهور.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا