ترغب بنشر مسار تعليمي؟ اضغط هنا

معالجة اللغة الطبيعية لعلماء الكمبيوتر وعلماء البيانات في جامعة ولاية كبيرة

Natural Language Processing for Computer Scientists and Data Scientists at a Large State University

315   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يتغير مجال معالجة اللغة الطبيعية (NLP) بسرعة، مما يتطلب عروض الدورة التدريبية للتكيف مع تلك التغييرات، و NLP ليس فقط لعلماء الكمبيوتر؛إنه مجال يجب أن يكون متاحا لأي شخص لديه خلفية كافية.في هذه الورقة، أشرح كيف يمكن إعداد الطلاب الذين لديهم خلفيات علوم الكمبيوتر وعلوم البيانات جيدا لدورة NLP الشعبة العليا في جامعة ولاية كبيرة.تغطي الدورة نظرية الاحتمالات ونظرية المعلومات، واللطاقات الأولية، والآلة والتعلم العميق، مع محاولة لتحقيق التوازن بين الأفكار والمفاهيم النظرية مع التطبيقات العملية.أشرح أهداف الدورة والمواضيع والواجبات، والتفكير في التعديلات على الدورة خلال السنوات الأربع الماضية، وكذلك ردود الفعل من الطلاب.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من كفاءتها المثبتة في المجالات الأخرى، فإن تكبير البيانات أقل شعبية في سياق معالجة اللغة الطبيعية (NLP) بسبب تعقيدها ونتائج محدودة.أظهرت دراسة حديثة (Longpre et al.، 2020) على سبيل المثال أن تعزز بيانات المهمة غير المرغوية تفشل في تعزيز أدا ء المحولات مسبقا حتى في أنظمة البيانات المنخفضة.في هذه الورقة، نحقق في ما إذا كان جدولة التكبير التي يحركها البيانات وإدماج مجموعة أوسع من التحولات يمكن أن تؤدي إلى تحسين الأداء حيث كانت السياسات الثابتة والمحدودة غير ناجحة.تشير نتائجنا إلى أنه، في حين أن هذا النهج يمكن أن يساعد عملية التدريب في بعض الإعدادات، فإن التحسينات غير صحيحة.هذه النتيجة السلبية تهدف إلى مساعدة الباحثين فهم أفضل قيود تكبير البيانات من أجل NLP.
هناك الآلاف من الأوراق حول معالجة اللغة الطبيعية واللغويات الحاسوبية، ولكن عدد قليل جدا من الكتب المدرسية.أصف الدافع والعملية لكتابة كتاب مدرسي في كلية حول معالجة اللغة الطبيعية، وتقديم المشورة والتشجيع للقراء الذين قد يهتمون بكتابة كتاب مدرسي خاص بهم.
تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إل ى زيادة الوعي بالشواغل العملية حول متانة NLP. يستهدف الباحثون والممارسون الخماسيون الذين يهتمون ببناء أنظمة NLP موثوقة. على وجه الخصوص، سنراجع الدراسات الحديثة حول تحليل ضعف أنظمة NLP عند مواجهة المدخلات والبيانات المعديين مع تحول التوزيع. سوف نقدم للجمهور بهدف شامل من 1) كيفية استخدام أمثلة الخصومة لفحص ضعف نماذج NLP وتسهيل تصحيح الأخطاء؛ 2) كيفية تعزيز متانة نماذج NLP الحالية والدفاع ضد المدخلات الخصومة؛ 3) كيف يؤثر النظر في المتانة على تطبيقات NLP العالمية الحقيقية المستخدمة في حياتنا اليومية. سنختتم البرنامج التعليمي عن طريق تحديد اتجاهات البحث في المستقبل في هذا المجال.
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية التي تعتمد نهجا تفاعلا، تعتمد اعتمادا كبيرا على نظام العدالة الجنائية. على النقيض من ذلك، يسعى البوب ​​لمنع الجريمة من خلال التلاعب بالظروف الأساسية التي تسمح بالارتكاب الجرائم. يتطلب تحديد هذه الشروط الأساسية فهما مفصلا لأحداث الجريمة - معرفة ضمنية تعقد غالبا من قبل ضباط الشرطة ولكن يمكن أن تكون صعبة للغاية للاستمتاع ببيانات الشرطة المهيكلة. يوجد أحد المصدر المحتمل للنصية في بيانات نصية مجانية غير منظمة تجمعها الشرطة لأغراض التحقيق أو الإدارة. ومع ذلك، فإن وكالات الشرطة لا تحتوي عادة على المهارات أو الموارد لتحليل هذه البيانات على نطاق واسع. في هذه المقالة، نقول أن NLP يقدم القدرة على فتح هذه البيانات غير المنظمة وبالتالي السماح للشرطة بتنفيذ المزيد من مبادرات البوب. ومع ذلك، نحذر أن استخدام نماذج NLP دون معرفة كافية قد يسمح إما بإدخال التحيز داخل البيانات التي تؤدي إلى نتائج غير مواتية.
قامت الأبحاث الحديثة بالتحقيق في Quantum NLP، تصميم الخوارزميات التي تعالج اللغة الطبيعية في أجهزة الكمبيوتر الكمومية، وكذلك الخوارزميات الملهمة الكمومية التي تحسن أداء NLP على أجهزة الكمبيوتر الكلاسيكية.في هذا الاستطلاع، نراجع الأساليب التمثيلية عند تقاطعات NLP والفيزياء الكمومية في السنوات العشر الماضية، مما يصنفها وفقا لاستخدام نظرية الكم، والأهداف اللغوية التي يتم تصميمها، والتطبيق المصب.تنتهي مراجعة الأدبيات بمناقشة حول العوامل الرئيسية للنجاح الذي حققه العمل الحالي، وكذلك التحديات المقبلة، بهدف فهم أفضل الوعود والمزيد من الاتجاهات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا