تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إلى زيادة الوعي بالشواغل العملية حول متانة NLP. يستهدف الباحثون والممارسون الخماسيون الذين يهتمون ببناء أنظمة NLP موثوقة. على وجه الخصوص، سنراجع الدراسات الحديثة حول تحليل ضعف أنظمة NLP عند مواجهة المدخلات والبيانات المعديين مع تحول التوزيع. سوف نقدم للجمهور بهدف شامل من 1) كيفية استخدام أمثلة الخصومة لفحص ضعف نماذج NLP وتسهيل تصحيح الأخطاء؛ 2) كيفية تعزيز متانة نماذج NLP الحالية والدفاع ضد المدخلات الخصومة؛ 3) كيف يؤثر النظر في المتانة على تطبيقات NLP العالمية الحقيقية المستخدمة في حياتنا اليومية. سنختتم البرنامج التعليمي عن طريق تحديد اتجاهات البحث في المستقبل في هذا المجال.
Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tutorial aims at bringing awareness of practical concerns about NLP robustness. It targets NLP researchers and practitioners who are interested in building reliable NLP systems. In particular, we will review recent studies on analyzing the weakness of NLP systems when facing adversarial inputs and data with a distribution shift. We will provide the audience with a holistic view of 1) how to use adversarial examples to examine the weakness of NLP models and facilitate debugging; 2) how to enhance the robustness of existing NLP models and defense against adversarial inputs; and 3) how the consideration of robustness affects the real-world NLP applications used in our daily lives. We will conclude the tutorial by outlining future research directions in this area.
المراجع المستخدمة
https://aclanthology.org/
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية
هناك الآلاف من الأوراق حول معالجة اللغة الطبيعية واللغويات الحاسوبية، ولكن عدد قليل جدا من الكتب المدرسية.أصف الدافع والعملية لكتابة كتاب مدرسي في كلية حول معالجة اللغة الطبيعية، وتقديم المشورة والتشجيع للقراء الذين قد يهتمون بكتابة كتاب مدرسي خاص بهم.
في هذه الورقة، نقترح تعريف وتعريفي من أنواع مختلفة من المحتوى النصي غير القياسي - يشار إليها عموما باسم الضوضاء "- في معالجة اللغة الطبيعية (NLP). في حين أن معالجة البيانات المسبقة هي بلا شك مهم بلا شك في NLP، خاصة عند التعامل مع المحتوى الذي تم إنشا
كيف يمكننا تصميم أنظمة معالجة اللغة الطبيعية (NLP) التي تتعلم من ردود الفعل البشرية؟هناك هيئة بحثية متزايدة من أطر NLP البشرية (HITL) التي تدمج بشكل مستمر ردود الفعل الإنسانية لتحسين النموذج نفسه.Hitl NLP Research NLP NATCENT ولكن MultiriSious - حل م