ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين الشرطة مع معالجة اللغة الطبيعية

Improving Policing with Natural Language Processing

580   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية التي تعتمد نهجا تفاعلا، تعتمد اعتمادا كبيرا على نظام العدالة الجنائية. على النقيض من ذلك، يسعى البوب ​​لمنع الجريمة من خلال التلاعب بالظروف الأساسية التي تسمح بالارتكاب الجرائم. يتطلب تحديد هذه الشروط الأساسية فهما مفصلا لأحداث الجريمة - معرفة ضمنية تعقد غالبا من قبل ضباط الشرطة ولكن يمكن أن تكون صعبة للغاية للاستمتاع ببيانات الشرطة المهيكلة. يوجد أحد المصدر المحتمل للنصية في بيانات نصية مجانية غير منظمة تجمعها الشرطة لأغراض التحقيق أو الإدارة. ومع ذلك، فإن وكالات الشرطة لا تحتوي عادة على المهارات أو الموارد لتحليل هذه البيانات على نطاق واسع. في هذه المقالة، نقول أن NLP يقدم القدرة على فتح هذه البيانات غير المنظمة وبالتالي السماح للشرطة بتنفيذ المزيد من مبادرات البوب. ومع ذلك، نحذر أن استخدام نماذج NLP دون معرفة كافية قد يسمح إما بإدخال التحيز داخل البيانات التي تؤدي إلى نتائج غير مواتية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أظهرت نماذج الشبكة العصبية المستندة إلى ما يحقظ أن عروض حديثة (SOTA) على مهام معالجة اللغة الطبيعية (NLP). تعد تمثيل الجملة الأكثر استخداما لأساليب NLP ذات الاستخدام العصبي سلسلة من الكلمات الفرعية المختلفة عن تمثيل الجملة من الأساليب غير العصبية الت ي يتم إنشاؤها باستخدام تقنيات NLP الأساسية، مثل العلامات على جزء من الكلام (POS)، اسمه الكيان (NE) الاعتراف، والتحليل. تتلقى معظم نماذج NLP ذات القائمة العصبية فقط ناقلات ترميزها من سلسلة من الكلمات الفرعية التي تم الحصول عليها من نص الإدخال. ومع ذلك، لا يمكن الحصول على معلومات NLP الأساسية، مثل علامات نقاط البيع، ونتائج NES، وتحليل النتائج، إلخ، بشكل صريح من النص الكبير غير المستخديم المستخدمة في النماذج المستندة إلى ما يحقظ. تستكشف هذه الورقة استخدام NES على مهمتين يابانيين؛ تصنيف المستندات والجيل الرئيسي باستخدام النماذج القائمة على المحولات، للكشف عن فعالية معلومات NLP الأساسية. تظهر النتائج التجريبية مع ثمانية NES أساسية وحوالي 200 نسمة موسعة أن NES يحسن الدقة على الرغم من استخدام نموذج كبير يستند إلى الاحتمالات المدربة باستخدام بيانات نصية 70 جيجابايت.
تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إل ى زيادة الوعي بالشواغل العملية حول متانة NLP. يستهدف الباحثون والممارسون الخماسيون الذين يهتمون ببناء أنظمة NLP موثوقة. على وجه الخصوص، سنراجع الدراسات الحديثة حول تحليل ضعف أنظمة NLP عند مواجهة المدخلات والبيانات المعديين مع تحول التوزيع. سوف نقدم للجمهور بهدف شامل من 1) كيفية استخدام أمثلة الخصومة لفحص ضعف نماذج NLP وتسهيل تصحيح الأخطاء؛ 2) كيفية تعزيز متانة نماذج NLP الحالية والدفاع ضد المدخلات الخصومة؛ 3) كيف يؤثر النظر في المتانة على تطبيقات NLP العالمية الحقيقية المستخدمة في حياتنا اليومية. سنختتم البرنامج التعليمي عن طريق تحديد اتجاهات البحث في المستقبل في هذا المجال.
هناك الآلاف من الأوراق حول معالجة اللغة الطبيعية واللغويات الحاسوبية، ولكن عدد قليل جدا من الكتب المدرسية.أصف الدافع والعملية لكتابة كتاب مدرسي في كلية حول معالجة اللغة الطبيعية، وتقديم المشورة والتشجيع للقراء الذين قد يهتمون بكتابة كتاب مدرسي خاص بهم.
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية الإعلامية منذ فترة طويلة، على الرغم من أن التقدم من طرازات التعلم العميق المنتهي في النهاية يظهر نتائج جديدة.في هذا البرنامج التعليمي، سنقدم أولا الخلفية وأحدث التقدم المحرز في التحليل النحوي و SRL / NMT.بعد ذلك، سنلخص الأدلة الرئيسية حول التأثيرات النحوية على هذين المهامين المتعلقين، واستكشاف الأسباب وراء كل من الخلفيات الحسابية واللغوية.
في هذه الورقة، نقترح تعريف وتعريفي من أنواع مختلفة من المحتوى النصي غير القياسي - يشار إليها عموما باسم الضوضاء "- في معالجة اللغة الطبيعية (NLP). في حين أن معالجة البيانات المسبقة هي بلا شك مهم بلا شك في NLP، خاصة عند التعامل مع المحتوى الذي تم إنشا ؤه من قبل المستخدم، فإن فهم أوسع لمصادر الضوضاء المختلفة وكيفية التعامل معها هو جانب تم إهماله إلى حد كبير. نحن نقدم قائمة شاملة للمصادر المحتملة للضوضاء، وتصنيفها ووصفها، وتظهر تأثير مجموعة فرعية من استراتيجيات المعالجة القياسية المعدلة على مهام مختلفة. هدفنا الرئيسي هو زيادة الوعي بالمحتوى غير المعتاد - والذي لا ينبغي اعتباره دائما ضوضاء "- والحاجة إلى المعالجة المسبقة التي تعتمد على المهام. هذا بديل إلى بطانية، مثل الحلول الشاملة التي تطبقها الباحثون بشكل عام من خلال "خطوط أنابيب معالجة مسبقا مسبقا". النية هي لهذا التصنيف بمثابة نقطة مرجعية لدعم الباحثين NLP في وضع الاستراتيجيات لتنظيف أو تطبيع أو احتضان المحتوى غير المعتاد.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا