تقدم هذه الورقة عملنا في مهمة تقدير الجودة WMT 2021 (QE).لقد شاركنا في جميع المهام الفرعية الثلاثة، بما في ذلك مهمة التقييم المباشر على مستوى الجملة، والكلمة ومهمة جهود جهود ما بعد التحرير للكلمة وحكم الجملة ومهمة الكشف عن الأخطاء الحرجة، في جميع أزواج اللغات.تستخدم أنظمتنا إطار النبة المقدرة، بشكل ملموس باستخدام XLM-Roberta مدربة مسبقا كقسم مؤشر ومجموعة من المهام أو التراجع كمقيم.بالنسبة لجميع المهام، نحسن أنظمتنا من خلال دمج الجملة بعد التعديل أو جملة ترجمة إضافية عالية الجودة في طريقة التعلم المتعدد أو ترميزها مع التنبؤ مباشرة.علاوة على ذلك، في وضع صفري بالرصاص، فإن استراتيجية تكبير البيانات الخاصة بنا تعتمد على تراجع مونت كارلو يجلب تحسنا كبيرا في مهمة DA Sub.والجدير بالذكر أن عروضنا تحقق نتائج ملحوظة على جميع المهام.
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task. We participated in all of the three sub-tasks, including Sentence-Level Direct Assessment (DA) task, Word and Sentence-Level Post-editing Effort task and Critical Error Detection task, in all language pairs. Our systems employ the framework of Predictor-Estimator, concretely with a pre-trained XLM-Roberta as Predictor and task-specific classifier or regressor as Estimator. For all tasks, we improve our systems by incorporating post-edit sentence or additional high-quality translation sentence in the way of multitask learning or encoding it with predictors directly. Moreover, in zero-shot setting, our data augmentation strategy based on Monte-Carlo Dropout brings up significant improvement on DA sub-task. Notably, our submissions achieve remarkable results over all tasks.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة تقديم مركز خدمات الترجمة Huawei (HW-TSC) إلى مهمة مشتركة من WMT 2021.نستكشف تقنية تقطير الطالبات على مستوى الجملة وتدريب العديد من النماذج الصغيرة التي تجد التوازن بين الكفاءة والجودة.تتميز نماذجنا بمثابة تشفير عميق ومكتشف ضحل وخفيف ا
تقدم هذه الورقة تقديم مركز خدمات Translate Huawei (HW-TSC) إلى مهمة مشتركة من WMT 2021.نشارك في 7 أزواج لغوية، بما في ذلك ZH / EN، DE / EN، JA / en، HA / EN، هي / EN، HI / BN، و XH / ZU في كلا الاتجاهين تحت الحالة المقيدة.نحن نستخدم بنية المحولات وال
تقدم هذه الورقة تقديم مركز خدمة الترجمة Huawei (HW-TSC) إلى المهمة المشتركة MT Triangular 2021.نشارك في المهمة الروسية إلى الصينية بموجب الحالة المقيدة.نحن نستخدم بنية المحولات والحصول على أفضل أداء عبر متغير بأحجام أكبر معلمة.نقوم بإجراء بيانات مفصل
نبلغ عن نتائج المهمة المشتركة WMT 2021 بشأن تقدير الجودة، حيث يتحدى التحدي هو التنبؤ بجودة إخراج أنظمة الترجمة الآلية العصبية على مستوى الكلمة ومستويات الجملة.ركزت هذه الطبعة على إضافات رواية رئيسيتين: (1) التنبؤ باللغات غير المرئية، أي إعدادات صفرية
تصف هذه الورقة تقديم Lingua Custodia إلى المهمة المشتركة WMT21 على الترجمة الآلية باستخدام المصطلحات.نحن نعتبر ثلاث اتجاهات، وهي الإنجليزية إلى الفرنسية والروسية والصينية.نحن نعتمد على بنية قائمة على المحولات كمنظمة بناء، ونحن نستكشف طريقة تقدم تغيير