تصف هذه الورقة تقديم Lingua Custodia إلى المهمة المشتركة WMT21 على الترجمة الآلية باستخدام المصطلحات.نحن نعتبر ثلاث اتجاهات، وهي الإنجليزية إلى الفرنسية والروسية والصينية.نحن نعتمد على بنية قائمة على المحولات كمنظمة بناء، ونحن نستكشف طريقة تقدم تغييرتين رئيسيتين على الإجراء القياسي للتعامل مع المصطلحات.أول واحد يتكون في زيادة البيانات التدريبية بطريقة تشجيع النموذج لتعلم سلوك النسخ عند مواجهة مصطلحات قواعد المصطلحات.التغيير الثاني هو عبيد موضعي اخفاء، والغرض منه هو تخفيف التعلم سلوك النسخ وتحسين تعميم النموذج.تظهر النتائج التجريبية أن طريقتنا تلبي معظم قيود المصطلين مع الحفاظ على جودة الترجمة عالية.
This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a building block, and we explore a method which introduces two main changes to the standard procedure to handle terminologies. The first one consists in augmenting the training data in such a way as to encourage the model to learn a copy behavior when it encounters terminology constraint terms. The second change is constraint token masking, whose purpose is to ease copy behavior learning and to improve model generalization. Empirical results show that our method satisfies most terminology constraints while maintaining high translation quality.
المراجع المستخدمة
https://aclanthology.org/
مجالات اللغة التي تتطلب الاستخدام الدقيق للغاية للمصطلحات وفيرة وتعكس جزءا كبيرا من صناعة الترجمة.في هذا العمل، نقدم معيارا لتقييم نوعية الترجمة المصطلحات والاتساق، مع التركيز على المجال الطبي (والكوفي 19 على وجه التحديد) لمدة خمسة أزواج لغوية: الإنج
تقدم هذه الورقة تقديم مركز خدمات Translate Huawei (HW-TSC) إلى مهمة مشتركة من WMT 2021.نشارك في 7 أزواج لغوية، بما في ذلك ZH / EN، DE / EN، JA / en، HA / EN، هي / EN، HI / BN، و XH / ZU في كلا الاتجاهين تحت الحالة المقيدة.نحن نستخدم بنية المحولات وال
تحديات مهمة كفاءة ترجمة الآلات التي تحديات المشاركين لجعل أنظمتهم أسرع وأصغر مع الحد الأدنى من التأثير على جودة الترجمة.ما مقدار الجودة للتضحية بالكفاءة يعتمد على التطبيق، لذلك تم تشجيع المشاركين على تقديم عروض متعددة تغطي مساحة المقاضيات.في المجموع،
تقدم هذه الورقة تقديم مركز خدمات الترجمة Huawei (HW-TSC) إلى مهمة مشتركة من WMT 2021.نستكشف تقنية تقطير الطالبات على مستوى الجملة وتدريب العديد من النماذج الصغيرة التي تجد التوازن بين الكفاءة والجودة.تتميز نماذجنا بمثابة تشفير عميق ومكتشف ضحل وخفيف ا
نقدم نتائج المهمة الأولى على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع.تتكون المهمة على التقييم المتعدد إلى العديد من النماذج الفردية عبر مجموعة متنوعة من اللغات المصدر والمستهدفة.هذا العام، تتألف المهمة على ثلاثة إعدادات مختلفة: (1) المهمة الصغي