ﻻ يوجد ملخص باللغة العربية
In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of loginsthat correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a paths logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hop-per achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of <9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8x as many false positives.
We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise accoun
The proliferation of Internet of Things (IoT) is reshaping our lifestyle. With IoT sensors and devices communicating with each other via the Internet, people can customize automation rules to meet their needs. Unless carefully defined, however, such
In the software design, protecting a computer system from a plethora of software attacks or malware in the wild has been increasingly important. One branch of research to detect the existence of attacks or malware, there has been much work focused on
For the planning of large pedestrian facilities, the movement of pedestrians in various situations has to be modelled. Many tools for pedestrian planning are based on cellular automata (CA), discrete in space and time, some use self driven pargticles
We study the evolution of interacting groups of agents in two-dimensional geometries. We introduce a microscopic stochastic model that includes floor fields modeling the global flow of individual groups as well as local interaction rules. From this m