ﻻ يوجد ملخص باللغة العربية
We study the evolution of interacting groups of agents in two-dimensional geometries. We introduce a microscopic stochastic model that includes floor fields modeling the global flow of individual groups as well as local interaction rules. From this microscopic model we derive an analytically-tractable system of conservation laws that governs the evolution of the macroscopic densities. Numerical simulations show good agreement between the system of conservation laws and the microscopic model, though the latter is slightly more diffusive. We conclude by deriving second-order corrections to the system of conservation laws.
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable
For the planning of large pedestrian facilities, the movement of pedestrians in various situations has to be modelled. Many tools for pedestrian planning are based on cellular automata (CA), discrete in space and time, some use self driven pargticles
Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently developed method for finding stochastic differential
Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. H
The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters. In particular, we focus on implicit-solvent CG modeling of polymer so