ترغب بنشر مسار تعليمي؟ اضغط هنا

SAFECHAIN: Securing Trigger-Action Programming from Attack Chains (Extended Technical Report)

124   0   0.0 ( 0 )
 نشر من قبل Hsu-Chun Hsiao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The proliferation of Internet of Things (IoT) is reshaping our lifestyle. With IoT sensors and devices communicating with each other via the Internet, people can customize automation rules to meet their needs. Unless carefully defined, however, such rules can easily become points of security failure as the number of devices and complexity of rules increase. Device owners may end up unintentionally providing access or revealing private information to unauthorized entities due to complex chain reactions among devices. Prior work on trigger-action programming either focuses on conflict resolution or usability issues, or fails to accurately and efficiently detect such attack chains. This paper explores security vulnerabilities when users have the freedom to customize automation rules using trigger-action programming. We define two broad classes of attack--privilege escalation and privacy leakage--and present a practical model-checking-based system called SAFECHAIN that detects hidden attack chains exploiting the combination of rules. Built upon existing model-checking techniques, SAFECHAIN identifies attack chains by modeling the IoT ecosystem as a Finite State Machine. To improve practicability, SAFECHAIN avoids the need to accurately model an environment by frequently re-checking the automation rules given the current states, and employs rule-aware optimizations to further reduce overhead. Our comparative analysis shows that SAFECHAIN can efficiently and accurately identify attack chains, and our prototype implementation of SAFECHAIN can verify 100 rules in less than one second with no false positives.



قيم البحث

اقرأ أيضاً

Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of the infected model will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger, while it performs well on benign samples. Currently, most of existing backdoor attacks adopted the setting of emph{static} trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing the characteristics of the static trigger. We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. We further explore how to utilize this property for backdoor defense, and discuss how to alleviate such vulnerability of existing attacks.
Trigger-action platforms (TAPs) allow users to connect independent web-based or IoT services to achieve useful automation. They provide a simple interface that helps end-users create trigger-compute-action rules that pass data between disparate Inter net services. Unfortunately, TAPs introduce a large-scale security risk: if they are compromised, attackers will gain access to sensitive data for millions of users. To avoid this risk, we propose eTAP, a privacy-enhancing trigger-action platform that executes trigger-compute-action rules without accessing users private data in plaintext or learning anything about the results of the computation. We use garbled circuits as a primitive, and leverage the unique structure of trigger-compute-action rules to make them practical. We formally state and prove the security guarantees of our protocols. We prototyped eTAP, which supports the most commonly used operations on popular commercial TAPs like IFTTT and Zapier. Specifically, it supports Boolean, arithmetic, and string operations on private trigger data and can run 100% of the top-500 rules of IFTTT users and 93.4% of all publicly-available rules on Zapier. Based on ten existing rules that exercise a wide variety of operations, we show that eTAP has a modest performance impact: on average rule execution latency increases by 70 ms (55%) and throughput reduces by 59%.
Databases can leak confidential information when users combine query results with probabilistic data dependencies and prior knowledge. Current research offers mechanisms that either handle a limited class of dependencies or lack tractable enforcement algorithms. We propose a foundation for Database Inference Control based on ProbLog, a probabilistic logic programming language. We leverage this foundation to develop Angerona, a provably secure enforcement mechanism that prevents information leakage in the presence of probabilistic dependencies. We then provide a tractable inference algorithm for a practically relevant fragment of ProbLog. We empirically evaluate Angeronas performance showing that it scales to relevant security-critical problems.
In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of loginsthat correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a paths logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hop-per achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of <9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8x as many false positives.
In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati N ational Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic climate led to a formal cancelation of the project on Nov 27, 2012.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا