ﻻ يوجد ملخص باللغة العربية
We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefitting from both the implicit trust and the information in the hijacked users account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employee-sent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the enterprise attacker and shed light on the current state of enterprise phishing attacks.
Phishing is one of the most severe cyber-attacks where researchers are interested to find a solution. In phishing, attackers lure end-users and steal their personal in-formation. To minimize the damage caused by phishing must be detected as early as
Phishing is a major problem on the Web. Despite the significant attention it has received over the years, there has been no definitive solution. While the state-of-the-art solutions have reasonably good performance, they require a large amount of tra
In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement
Most current approaches to characterize and detect hate speech focus on textit{content} posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjec
In this paper we provide evidence of an emerging criminal infrastructure enabling impersonation attacks at scale. Impersonation-as-a-Service (ImpaaS) allows attackers to systematically collect and enforce user profiles (consisting of user credentials