ﻻ يوجد ملخص باللغة العربية
In the software design, protecting a computer system from a plethora of software attacks or malware in the wild has been increasingly important. One branch of research to detect the existence of attacks or malware, there has been much work focused on modeling the runtime behavior of a program. Stemming from the seminal work of Forrest et al., one of the main tools to model program behavior is system call sequences. Unfortunately, however, since mimicry attacks were proposed, program behavior models based solely on system call sequences could no longer ensure the security of systems and require additional information that comes with its own drawbacks. In this paper, we report our preliminary findings in our research to build a mimicry resilient program behavior model that has lesser drawbacks. We employ branch sequences to harden our program behavior model against mimicry attacks while employing hardware features for efficient extraction of such branch information during program runtime. In order to handle the large scale of branch sequences, we also employ LSTM, the de facto standard in deep learning based sequence modeling and report our preliminary experiments on its interaction with program branch sequences.
While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple lo
Existing approaches to cyber security and regulation in the automotive sector cannot achieve the quality of outcome necessary to ensure the safe mass deployment of advanced vehicle technologies and smart mobility systems. Without sustainable resilien
Language models (LMs) based on Long Short Term Memory (LSTM) have shown good gains in many automatic speech recognition tasks. In this paper, we extend an LSTM by adding highway networks inside an LSTM and use the resulting Highway LSTM (HW-LSTM) mod
Observational models make tractable the analysis of information flow properties by providing an abstraction of side channels. We introduce a methodology and a tool, Scam-V, to validate observational models for modern computer architectures. We combin
In cloud and edge computing models, it is important that compute devices at the edge be as power efficient as possible. Long short-term memory (LSTM) neural networks have been widely used for natural language processing, time series prediction and ma