ﻻ يوجد ملخص باللغة العربية
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topology which is located outside the black hole region. Based on existing techniques in the literature, the spacetime can in principle be constructed to be past geodesically complete and asymptotic to Minkowski space. The construction is based on a semi-global existence result of the vacuum Einstein equations built on a modified version of the a priori estimates that were originally established by Christodoulou in his work on the formation of trapped surface, and a gluing construction carried out inside the black hole. In particular, the full detail of the a priori estimates needed for the existence is provided, which can be regarded as a simplification of Christodoulous original argument.
We prove existence of large families of solutions of Einstein-complex scalar field equations with a negative cosmological constant, with a stationary or static metric and a time-periodic complex scalar field.
We show the existence of complete, asymptotically flat Cauchy initial data for the vacuum Einstein field equations, free of trapped surfaces, whose future development must admit a trapped surface. Moreover, the datum is exactly a constant time slice
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an
Published in 1999, Christodoulou proved that the naked singularities of a self-gravitating scalar field are not stable in spherical symmetry and therefore the cosmic censorship conjecture is true in this context. The original proof is by contradictio
We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related