ﻻ يوجد ملخص باللغة العربية
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topo
We present the first numerical code based on the Galerkin and Collocation methods to integrate the field equations of the Bondi problem. The Galerkin method like all spectral methods provide high accuracy with moderate computational effort. Several n
We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related
Perturbation theory of vacuum spherically-symmetric spacetimes is a crucial tool to understand the dynamics of black hole perturbations. Spherical symmetry allows for an expansion of the perturbations in scalar, vector, and tensor harmonics. The resu
In this paper we consider homothetic Killing vectors in the class of stationary axisymmetric vacuum (SAV) spacetimes, where the components of the vectors are functions of the time and radial coordinates. In this case the component of any homothetic K