ﻻ يوجد ملخص باللغة العربية
Published in 1999, Christodoulou proved that the naked singularities of a self-gravitating scalar field are not stable in spherical symmetry and therefore the cosmic censorship conjecture is true in this context. The original proof is by contradiction and sharp estimates are obtained strictly depending on spherical symmetry. In this paper, appropriate a priori estimates for the solution are obtained. These estimates are more relaxed but sufficient for giving another robust argument in proving the instability, in particular not by contradiction. In another related paper, we are able to prove instability theorems of the spherical symmetric naked singularities under certain isotropic gravitational perturbations without symmetries. The argument given in this paper plays a central role.
In this paper, we initiate the study of the instability of naked singularities without symmetries. In a series of papers, Christodoulou proved that naked singularities are not stable in the context of the spherically symmetric Einstein equations coup
We show that the spherically symmetric Einstein-scalar-field equations for wave-like decaying initial data at null infinity have unique global solutions in (0, infty) and unique generalized solutions on [0, infty) in the sense of Christodoulou. We emphasize that this decaying condition is sharp.
In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einsteins field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable wi
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topo
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evol