ﻻ يوجد ملخص باللغة العربية
We show the existence of complete, asymptotically flat Cauchy initial data for the vacuum Einstein field equations, free of trapped surfaces, whose future development must admit a trapped surface. Moreover, the datum is exactly a constant time slice in Minkowski space-time inside and exactly a constant time slice in Kerr space-time outside. The proof makes use of the full strength of Christodoulous work on the dynamical formation of black holes and Corvino-Schoens work on the constructions of initial data set.
In this paper, we investigate the four-dimensional Einstein-Gauss-Bonnet black hole. The thermodynamic variables and equations of state of black holes are obtained in terms of a new parameterization. We discuss a formulation of the van der Waals equa
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topo
We extend the monumental result of Christodoulou-Klainerman on the global nonlinear stability of the Minkowski spacetime to the global nonlinear stability of a class of large dispersive spacetimes. More precisely, we show that any regular future caus
We show that the spherically symmetric Einstein-scalar-field equations for wave-like decaying initial data at null infinity have unique global solutions in (0, infty) and unique generalized solutions on [0, infty) in the sense of Christodoulou. We emphasize that this decaying condition is sharp.
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the