ﻻ يوجد ملخص باللغة العربية
We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related to an unstable periodic orbit in general relativity. We analyze several static axisymmetric spacetimes and find that the first criterion is a sufficient condition for chaos, at least qualitatively. Although some test particles which do not satisfy the first criterion show chaotic behavior in some spacetimes, these can be accounted for the second criterion.
In this paper we consider homothetic Killing vectors in the class of stationary axisymmetric vacuum (SAV) spacetimes, where the components of the vectors are functions of the time and radial coordinates. In this case the component of any homothetic K
We present the first numerical code based on the Galerkin and Collocation methods to integrate the field equations of the Bondi problem. The Galerkin method like all spectral methods provide high accuracy with moderate computational effort. Several n
In this manuscript, we consider a scenario in which a spin-1/2 quanton goes through a superposition of co-rotating and counter-rotating geodetic circular paths, which play the role of the paths of a Mach-Zehnder interferometer in a stationary and axi
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topo
Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This