ﻻ يوجد ملخص باللغة العربية
We present and study new mechanism of interaction between the solitons based on the exchange interaction mediated by the localized fermion states. As particular examples, we consider solutions of simple 1+1 dimensional scalar field theories with self-interaction potentials, including sine-Gordon model and the polynomial $phi^4$, $phi^6$ models, coupled to the Dirac fermions with back-reaction. We discover that there is an additional fermion exchange interaction between the solitons, it leads to the formation of static multi-soliton bound states. Further, we argue that similar mechanisms of formation of stable coupled multi-soliton configurations can be observed for a wide class of physical systems.
The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechani
In this paper the scattering between a wobbling kink and a wobbling antikink in the standard $phi^4$ model is numerically investigated. The dependence of the final velocities, wobbling amplitudes and frequencies of the scattered kinks on the collisio
Sine-Gordon kinks are a much studied integrable system that possesses multi-soliton solutions. Recent studies on sine-Gordon kinks with space-dependent square-well-type potentials have revealed interesting dynamics of a single kink interacting with w
We study the creation of solitons from particles, using the $lambda phi^4$ model as a prototype. We consider the scattering of small, identical, wave pulses, that are equivalent to a sequence of particles, and find that kink-antikink pairs are create
A first order equation for a static ${phi}^4$ kink in the presence of an impurity is extended into an iterative scheme. At the first iteration, the solution is the standard kink, but at the second iteration the kink impurity generates a kink-antikink