ﻻ يوجد ملخص باللغة العربية
Sine-Gordon kinks are a much studied integrable system that possesses multi-soliton solutions. Recent studies on sine-Gordon kinks with space-dependent square-well-type potentials have revealed interesting dynamics of a single kink interacting with wells and barriers. In this paper, we study a class of smooth space-dependent potentials and discuss the dynamics of one kink in the presence of different wells. We also present values for the critical velocity for different types of barriers. Furthermore, we study two kinks interacting with various wells and describe interesting trajectories such as double-trapping, kink knock-out and double-escape.
We present and study new mechanism of interaction between the solitons based on the exchange interaction mediated by the localized fermion states. As particular examples, we consider solutions of simple 1+1 dimensional scalar field theories with self
In this paper the scattering between a wobbling kink and a wobbling antikink in the standard $phi^4$ model is numerically investigated. The dependence of the final velocities, wobbling amplitudes and frequencies of the scattered kinks on the collisio
We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein-Gordon models. The multi-kinks are constructed using Lins method from a
We investigate numerically kink collisions in a $1+1$ dimensional scalar field theory with multiple vacua. The domain wall model we are interested in involves two scalar fields and a potential term built from an asymmetric double well and (double) si
The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechani