ﻻ يوجد ملخص باللغة العربية
The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechanics. To do so, we compute the transition probabilities between states given in terms of the Bogoliubov coefficients. We derive Fermis golden rule for the model, which allows the transition to the continuum at a constant rate if the fermion-kink coupling constant is smaller than the wobbling frequency. Moreover, we study the system replacing the shape mode with a quasinormal mode. In this case, the transition rate to continuum decays in time due to the leakage of the mode, and the final transition probability decreases sharply for large coupling constants in a way that is analogous to Fermis golden rule. Throughout the paper, we compare the perturbative results with numerical simulations and show that they are in good agreement.
In this paper the scattering between a wobbling kink and a wobbling antikink in the standard $phi^4$ model is numerically investigated. The dependence of the final velocities, wobbling amplitudes and frequencies of the scattered kinks on the collisio
We present and study new mechanism of interaction between the solitons based on the exchange interaction mediated by the localized fermion states. As particular examples, we consider solutions of simple 1+1 dimensional scalar field theories with self
We investigate the role that quasinormal modes can play in kink-antikink collisions, via an example based on a perturbation of the $phi^4$ model. We find that narrow quasinormal modes can store energy during collision processes and return it back to
We study quasinormal modes of shear gravitational perturbations for hyperscaling violating Lifshitz theories, with Lifshitz and hyperscaling violating exponents $z$ and $theta$. The lowest quasinormal mode frequency yields a shear diffusion constant
Sine-Gordon kinks are a much studied integrable system that possesses multi-soliton solutions. Recent studies on sine-Gordon kinks with space-dependent square-well-type potentials have revealed interesting dynamics of a single kink interacting with w