ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterated ${phi}^4$ Kinks

197   0   0.0 ( 0 )
 نشر من قبل Katarzyna Ole\\'s
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A first order equation for a static ${phi}^4$ kink in the presence of an impurity is extended into an iterative scheme. At the first iteration, the solution is the standard kink, but at the second iteration the kink impurity generates a kink-antikink solution or a bump solution, depending on a constant of integration. The third iterate can be a kink-antikink-kink solution or a single kink modified by a variant of the kinks shape mode. All equations are first order ODEs, so the nth iterate has n moduli, and it is proposed that the moduli space could be used to model the dynamics of n kinks and antikinks. Curiously, fixed points of the iteration are ${phi}^6$ kinks.



قيم البحث

اقرأ أيضاً

We study boundary scattering in the $phi^4$ model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state. We also study the decay of the vibrational boundary mode, and explore different scenarios for its relaxation and for the creation of kinks.
The $phi^4$ model is coupled to an impurity in a way that preserves one-half of the BPS property. This means that the antikink-impurity bound state is still a BPS solution, i.e., a zero-pressure solution saturating the topological energy bound. The k ink-impurity bound state, on the other hand, does not saturate the bound, in general. We found that, although the impurity breaks translational invariance, it is, in some sense, restored in the BPS sector where the energy of the antikink-impurity solution does not depend on their mutual distance. This is reflected in the existence of a generalised translational symmetry and a zero mode. We also investigate scattering processes. In particular, we compare the antikink-impurity interaction close to the BPS regime, which presents a rather smooth, elastic like nature, with other scattering processes. However, even in this case, after exciting a sufficiently large linear mode on the incoming antikink, we can depart from the close-to-BPS regime. This results, for example, in a backward scattering.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static inter action is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
In a previous paper it was shown how to calculate the ground-state energy density $E$ and the $p$-point Greens functions $G_p(x_1,x_2,...,x_p)$ for the $PT$-symmetric quantum field theory defined by the Hamiltonian density $H=frac{1}{2}( ablaphi)^2+f rac{1}{2}phi^2(iphi)^varepsilon$ in $D$-dimensional Euclidean spacetime, where $phi$ is a pseudoscalar field. In this earlier paper $E$ and $G_p(x_1,x_2,...,x_p)$ were expressed as perturbation series in powers of $varepsilon$ and were calculated to first order in $varepsilon$. (The parameter $varepsilon$ is a measure of the nonlinearity of the interaction rather than a coupling constant.) This paper extends these perturbative calculations to the Euclidean Lagrangian $L= frac{1}{2}( ablaphi)^2+frac{1}{2}mu^2phi^2+frac{1}{2} gmu_0^2phi^2big(imu_0^{1-D/2}phibig)^varepsilon-ivphi$, which now includes renormalization counterterms that are linear and quadratic in the field $phi$. The parameter $g$ is a dimensionless coupling strength and $mu_0$ is a scaling factor having dimensions of mass. Expressions are given for the one-, two, and three-point Greens functions, and the renormalized mass, to higher-order in powers of $varepsilon$ in $D$ dimensions ($0leq Dleq2$). Renormalization is performed perturbatively to second order in $varepsilon$ and the structure of the Greens functions is analyzed in the limit $Dto 2$. A sum of the most divergent terms is performed to {it all} orders in $varepsilon$. Like the Cheng-Wu summation of leading logarithms in electrodynamics, it is found here that leading logarithmic divergences combine to become mildly algebraic in form. Future work that must be done to complete the perturbative renormalization procedure is discussed.
We consider the general $mathcal{N}{=},4,$ $d{=},3$ Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for $mathcal{N}{=},4$ three-dim ensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic $kappa$-gauge transformations. The quantization of the model gives rise to the collection of free $mathcal{N}{=},4$, $d{=},3$ Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic $mathcal{N}{=},4$ supersymmetric theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا