ﻻ يوجد ملخص باللغة العربية
We prove the superhedging duality for a discrete-time financial market with proportional transaction costs under model uncertainty. Frictions are modeled through solvency cones as in the original model of [Kabanov, Y., Hedging and liquidation under transaction costs in currency markets. Fin. Stoch., 3(2):237-248, 1999] adapted to the quasi-sure setup of [Bouchard, B. and Nutz, M., Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab., 25(2):823-859, 2015]. Our approach allows to remove the restrictive assumption of No Arbitrage of the Second Kind considered in [Bouchard, B., Deng, S. and Tan, X., Super-replication with proportional transaction cost under model uncertainty, Math. Fin., 29(3):837-860, 2019] and to show the duality under the more natural condition of No Strict Arbitrage. In addition, we extend the results to models with portfolio constraints.
In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent clai
In a discrete-time financial market, a generalized duality is established for model-free superhedging, given marginal distributions of the underlying asset. Contrary to prior studies, we do not require contingent claims to be upper semicontinuous, al
We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Mar
Quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation, which greatly simplifies their numerical implementation. We present a qualitative study of t
We introduce and study the notion of sure profit via flash strategy, consisting of a high-frequency limit of buy-and-hold trading strategies. In a fully general setting, without imposing any semimartingale restriction, we prove that there are no sure