ﻻ يوجد ملخص باللغة العربية
In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path $omega in Omega$, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and prove that it is an analytic set.
In a discrete-time financial market, a generalized duality is established for model-free superhedging, given marginal distributions of the underlying asset. Contrary to prior studies, we do not require contingent claims to be upper semicontinuous, al
We prove the superhedging duality for a discrete-time financial market with proportional transaction costs under model uncertainty. Frictions are modeled through solvency cones as in the original model of [Kabanov, Y., Hedging and liquidation under t
We study the Fundamental Theorem of Asset Pricing for a general financial market under Knightian Uncertainty. We adopt a functional analytic approach which require neither specific assumptions on the class of priors $mathcal{P}$ nor on the structure
We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free Variational Autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven model
This paper investigates Pareto optimal (PO, for short) insurance contracts in a behavioral finance framework, in which the insured evaluates contracts by the rank-dependent utility (RDU) theory and the insurer by the expected value premium principle.