ﻻ يوجد ملخص باللغة العربية
We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation which simplifies their numerical implementation and simulation. We show rigorously that the short rate in these models explodes in finite time with positive probability, under certain assumptions for the model parameters, and that the explosion occurs in finite time with probability one under some stronger assumptions. We discuss the implications of these results for the pricing of the zero coupon bonds and Eurodollar futures under this model.
Quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation, which greatly simplifies their numerical implementation. We present a qualitative study of t
Replacing Black-Scholes driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the fin
Developments in finance industry and academic research has led to innovative financial products. This paper presents an alternative approach to price American options. Our approach utilizes famous cite{heath1992bond} (HJM) technique to calculate Amer
In a multi-dimensional diffusion framework, the price of a financial derivative can be expressed as an iterated conditional expectation, where the inner conditional expectation conditions on the future of an auxiliary process that enters into the dyn
We develop a robust framework for pricing and hedging of derivative securities in discrete-time financial markets. We consider markets with both dynamically and statically traded assets and make minimal measurability assumptions. We obtain an abstrac