ﻻ يوجد ملخص باللغة العربية
We introduce and study the notion of sure profit via flash strategy, consisting of a high-frequency limit of buy-and-hold trading strategies. In a fully general setting, without imposing any semimartingale restriction, we prove that there are no sure profits via flash strategies if and only if asset prices do not exhibit predictable jumps. This result relies on the general theory of processes and provides the most general formulation of the well-known fact that, in an arbitrage-free financial market, asset prices (including dividends) should not exhibit jumps of a predictable direction or magnitude at predictable times. We furthermore show that any price process is always right-continuous in the absence of sure profits. Our results are robust under small transaction costs and imply that, under minimal assumptions, price changes occurring at scheduled dates should only be due to unanticipated information releases.
We consider optimal execution strategies for block market orders placed in a limit order book (LOB). We build on the resilience model proposed by Obizhaeva and Wang (2005) but allow for a general shape of the LOB defined via a given density function.
We provide a new characterization of mean-variance hedging strategies in a general semimartingale market. The key point is the introduction of a new probability measure $P^{star}$ which turns the dynamic asset allocation problem into a myopic one. Th
We study a phenomenological model for the continuous double auction, equivalent to two independent $M/M/1$ queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are
The VSTOXX index tracks the expected 30-day volatility of the EURO STOXX 50 equity index. Futures on the VSTOXX index can, therefore, be used to hedge against economic uncertainty. We investigate the effect of trader inventory on the price of VSTOXX
We introduce a new formulation of asset trading games in continuous time in the framework of the game-theoretic probability established by Shafer and Vovk (Probability and Finance: Its Only a Game! (2001) Wiley). In our formulation, the market moves