ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-noise limit of the quasi-Gaussian log-normal HJM model

102   0   0.0 ( 0 )
 نشر من قبل Lingjiong Zhu
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation, which greatly simplifies their numerical implementation. We present a qualitative study of the solutions of the quasi-Gaussian log-normal HJM model. Using a small-noise deterministic limit we show that the short rate may explode to infinity in finite time. This implies the explosion of the Eurodollar futures prices in this model. We derive explicit explosion criteria under mild assumptions on the shape of the yield curve.



قيم البحث

اقرأ أيضاً

115 - Dan Pirjol , Lingjiong Zhu 2019
We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Mar kovian representation which simplifies their numerical implementation and simulation. We show rigorously that the short rate in these models explodes in finite time with positive probability, under certain assumptions for the model parameters, and that the explosion occurs in finite time with probability one under some stronger assumptions. We discuss the implications of these results for the pricing of the zero coupon bonds and Eurodollar futures under this model.
138 - Dan Pirjol , Lingjiong Zhu 2020
We propose a novel time discretization for the log-normal SABR model which is a popular stochastic volatility model that is widely used in financial practice. Our time discretization is a variant of the Euler-Maruyama scheme. We study its asymptotic properties in the limit of a large number of time steps under a certain asymptotic regime which includes the case of finite maturity, small vol-of-vol and large initial volatility with fixed product of vol-of-vol and initial volatility. We derive an almost sure limit and a large deviations result for the log-asset price in the limit of large number of time steps. We derive an exact representation of the implied volatility surface for arbitrary maturity and strike in this regime. Using this representation we obtain analytical expansions of the implied volatility for small maturity and extreme strikes, which reproduce at leading order known asymptotic results for the continuous time model.
In the papers Carmona and Durrleman [7] and Bjerksund and Stensland [1], closed form approximations for spread call option prices were studied under the log normal models. In this paper, we give an alternative closed form formula for the price of spr ead call options under the log-normal models also. Our formula can be seen as a generalization of the closed-form formula presented in Bjerksund and Stensland [1] as their formula can be obtained by selecting special parameter values to our formula. Numerical tests show that our formula performs better for certain range of model parameters than the closed-form formula presented in Bjerksund and Stensland [1].
Developments in finance industry and academic research has led to innovative financial products. This paper presents an alternative approach to price American options. Our approach utilizes famous cite{heath1992bond} (HJM) technique to calculate Amer ican option written on an asset. Originally, HJM forward modeling approach was introduced as an alternative approach to bond pricing in fixed income market. Since then, cite{schweizer2008term} and cite{carmona2008infinite} extended HJM forward modeling approach to equity market by capturing dynamic nature of volatility. They modeled the term structure of volatility, which is commonly observed in the market place as opposed to constant volatility assumption under Black - Scholes framework. Using this approach, we propose an alternative value function, a stopping criteria and a stopping time. We give an example of how to price American put option using proposed methodology.
We develop a method to infer log-normal random fields from measurement data affected by Gaussian noise. The log-normal model is well suited to describe strictly positive signals with fluctuations whose amplitude varies over several orders of magnitud e. We use the formalism of minimum Gibbs free energy to derive an algorithm that uses the signals correlation structure to regularize the reconstruction. The correlation structure, described by the signals power spectrum, is thereby reconstructed from the same data set. We show that the minimization of the Gibbs free energy, corresponding to a Gaussian approximation to the posterior marginalized over the power spectrum, is equivalent to the empirical Bayes ansatz, in which the power spectrum is fixed to its maximum a posteriori value. We further introduce a prior for the power spectrum that enforces spectral smoothness. The appropriateness of this prior in different scenarios is discussed and its effects on the reconstructions results are demonstrated. We validate the performance of our reconstruction algorithm in a series of one- and two-dimensional test cases with varying degrees of non-linearity and different noise levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا