ﻻ يوجد ملخص باللغة العربية
Images of uniform and upright nanowires are fascinating, but often, they are quite puzzling, when epitaxial templating from the substrate is clearly absent. Here, we reveal the physics underlying one such hidden growth guidance mechanism through a specific example - the case of ZnO nanowires grown on silicon oxide and glass. We show how electric fields exerted by the insulating substrate may be manipulated through the surface charge to define the orientation and polarity of the nanowires. Surface charge is ubiquitous on the surfaces of semiconductors and insulators, and as a result, substrate electric fields need always be considered. Our results suggest a new concept, according to which the growth of wurtzite semiconductors may often be described as a process of electric-charge-induced self assembly, wherein the internal built-in field in the polar material tends to align in parallel to an external field exerted by the substrate to minimize the interfacial energy of the system.
The mayfly nymph breathes under water through an oscillating array of wing-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly
We present direct evidence of enhanced Ga interdiffusion in InAs free-standing nanowires grown at moderate temperatures by molecular beam epitaxy on GaAs (111)B. Scanning electron microscopy together with X-ray diffraction measurements in coplanar an
Microtribological properties of vertically-aligned carbon-nanotube (VACNT) films have been studied. Adhesion forces were obtained by measuring force-displacement curves. Friction experiments were conducted in reciprocating sliding configurations. Eff
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe
The aim of this study is to probe the influence of water vapor environment on the microtribological properties of a forestlike vertically aligned carbon nanotube (VACNT) film, deposited on a silicon (001) substrate by chemical vapor deposition. Tribo