ترغب بنشر مسار تعليمي؟ اضغط هنا

Why do mayflies change their gill kinematics as they grow?

78   0   0.0 ( 0 )
 نشر من قبل Rodolphe Chabreyrie
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mayfly nymph breathes under water through an oscillating array of wing-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons to this switch. In order to understand the whys and the hows of this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that distributes and spreads water and dissolved oxygen well between and around the gills is the main goal of the gill motion. Using this Lagrangian approach we are able to provide the reason behind the switch from rowing to flapping that the mayfly nymph experiences as it grows. More precisely, recent and powerful tools from this Lagrangian approach are applied to in-sillico mayfly nymph experiments, where body shape, as well as, gill shapes, structures and kinematics are matched to those from in-vivo. In this letter, we show both qualitatively and quantitatively how the change of kinematics enables a better attraction, stirring and confinement of water charged of dissolved oxygen inside the gills area. From the computational velocity field we reveal attracting barriers to transport, i.e. attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles and consequently dissolved oxgen is spread and stirred inside the gills area.



قيم البحث

اقرأ أيضاً

Images of uniform and upright nanowires are fascinating, but often, they are quite puzzling, when epitaxial templating from the substrate is clearly absent. Here, we reveal the physics underlying one such hidden growth guidance mechanism through a sp ecific example - the case of ZnO nanowires grown on silicon oxide and glass. We show how electric fields exerted by the insulating substrate may be manipulated through the surface charge to define the orientation and polarity of the nanowires. Surface charge is ubiquitous on the surfaces of semiconductors and insulators, and as a result, substrate electric fields need always be considered. Our results suggest a new concept, according to which the growth of wurtzite semiconductors may often be described as a process of electric-charge-induced self assembly, wherein the internal built-in field in the polar material tends to align in parallel to an external field exerted by the substrate to minimize the interfacial energy of the system.
125 - Carl H. Gibson 2012
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales (where the vorticity is created) to larger scales (where other forces dominate and the turbulence fossilizes). Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate information about previous turbulence to larger and smaller length scales. Big bang fossil turbulence patterns are identified in anisotropies of temperature detected by space telescopes in the cosmic microwave background. Direct numerical simulations of stratified shear flows and wakes show that turbulence and fossil turbulence interactions are recognizable and persistent.
77 - V. S. Lvov , L. Skrbek 2011
The relationship between the apparently unrelated physical quantities -- kinematic viscosity of liquid He-4, $ u$, and quantum of circulation, $kappa=2pi hbar/m_4$, where $hbar$ is the Planck constant and $m_4$ denotes the mass of the $^4$He atom -- is examined in the vicinity of the superfluid transition occurring due to Bose-Einstein condensation. A model is developed, leading to the surprisingly simple relation $ u approx kappa/6$. We critically examine the available experimental data for $^4$He relevant to this simple relation and predict the kinematic viscosity for the stretched liquid $^4$He along the $lambda$-line at negative pressures.
114 - Gary A Mamon 2010
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger trees, to predict when they form their stars. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. We deduce that most dwarf ellipticals are not built up by galaxy mergers. With the second approach, we constrain the star formation histories of dwarfs by requiring that star formation must occur within halos of a minimum circular velocity set by the evolution of the temperature of the IGM, starting before the epoch of reionization. We qualitatively reproduce the downsizing trend of greater ages at greater masses and predict an upsizing trend of greater ages as one proceeds to masses lower than m_crit. We find that the fraction of galaxies with very young stellar populations (more than half the mass formed within the last 1.5 Gyr) is a function of present-day mass in stars and cold gas, which peaks at 0.5% at m_crit=10^6-8 M_Sun, corresponding to blue compact dwarfs such as I Zw 18. We predict that the baryonic mass function of galaxies should not show a maximum at masses above 10^5.5, M_Sun, and we speculate on the nature of the lowest mass galaxies.
Sigmoids (AKA s-curves or logistic curves) are commonly used in a diverse spectrum of disciplines as models for time-varying phenomena showing initial acceleration followed by slowing: technology diffusion, cumulative cases of an epidemic, population growth towards a carrying capacity, etc. Existing work demonstrates that retrospective fit of data is often impressive. We show that in time series data, the future fit tends to be poor unless the data covers the entire range from before to after the inflection point. We discuss the theoretical reasons for this: the growth data provides little information about the damping term (and vice-versa). As a consequence, forecasting with sigmoids tends to be very unreliable. We suggest some practical approaches to improving the viability of forecasting sigmoid models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا