ﻻ يوجد ملخص باللغة العربية
The aim of this study is to probe the influence of water vapor environment on the microtribological properties of a forestlike vertically aligned carbon nanotube (VACNT) film, deposited on a silicon (001) substrate by chemical vapor deposition. Tribological experiments were performed using a gold tip under relative humidity varying from 0 to 100%. Very low adhesion forces and high friction coefficients of 0.6 to 1.3 resulted. The adhesion and friction forces were independent of humidity, due probably to the high hydrophobicity of VACNT. These tribological characteristics were compared to those of a diamond like carbon (DLC) sample.
Microtribological properties of vertically-aligned carbon-nanotube (VACNT) films have been studied. Adhesion forces were obtained by measuring force-displacement curves. Friction experiments were conducted in reciprocating sliding configurations. Eff
Feedstock and byproduct diffusion in the root growth of aligned CNT arrays was discussed in this work. A non-dimensional modulus was proposed to differentiate catalyst-decay controlled growth deceleration from diffusion controlled one. It was found t
In this paper, we model the evolution and self-assembly of randomly oriented carbon nanotubes (CNTs), grown on a metallic substrate in the form of a thin film for field emission under diode configuration. Despite high output, the current in such a th
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotub