ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxy of Semiconductor-Superconductor nanowires

256   0   0.0 ( 0 )
 نشر من قبل Charles Marcus
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.



قيم البحث

اقرأ أيضاً

Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
Semiconductor nanowires such as InAs and InSb are promising materials for studying Majorana zero-modes and demonstrating non-Abelian particle exchange relevant for topological quantum computing. While evidence for Majorana bound states in nanowires h as been shown, the majority of these experiments are marked by significant disorder. In particular, the interfacial inhomogeneity between the superconductor and nanowire is strongly believed to be the main culprit for disorder and the resulting soft superconducting gap ubiquitous in tunneling studies of hybrid semiconductor-superconductor systems. Additionally, a lack of ballistic transport in nanowire systems can create bound states that mimic Majorana signatures. We resolve these problems through the development of selective-area epitaxy of Al to InSb nanowires, a technique applicable to other nanowires and superconductors. Epitaxial InSb-Al devices generically possess a hard superconducting gap and demonstrate ballistic 1D superconductivity and near perfect transmission of supercurrents in the single mode regime, requisites for engineering and controlling 1D topological superconductivity. Additionally, we demonstrate that epitaxial InSb-Al superconducting island devices, the building blocks for Majorana based quantum computing applications, prepared using selective area epitaxy can achieve micron scale ballistic 1D transport. Our results pave the way for the development of networks of ballistic superconducting electronics for quantum device applications.
We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at lo w temperature. Half-covering aluminum contacts are realized without the need of lithography and we demonstrate how to controllably insert high-band gap layers in the interface region. These developments are relevant to hybrid superconductor-nanowire devices that support Majorana zero energy states.
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here, we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor which enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
We propose a compact and highly-efficient scheme for complete Bell-state analysis using two-photon absorption in a superconducting proximity region of a semiconductor avalanche photodiode. One-photon transitions to the superconducting Cooper-pair bas ed condensate in the conduction band are forbidden, whereas two-photon transitions are allowed and are strongly enhanced by superconductivity. This Cooper-pair based two-photon absorption results in a strong detection preference of a specified entangled state. Our analysis shows high detection purity of the desired Bell state with negligible false detection probability. The theoretically-demonstrated concept can pave the way towards practical realizations of advanced quantum information schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا