ﻻ يوجد ملخص باللغة العربية
We present pySecDec, a new version of the program SecDec, which performs the factorisation of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.
SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.
A purely numerical method, Direct ComputationMethod is applied to evaluate Feynman integrals. This method is based on the combination of an efficient numerical integration and an efficient extrapolation. In addition, high-precision arithmetic and par
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
Higher-order radiative corrections play an important role in precision studies of the electroweak and Higgs sector, as well as for the detailed understanding of large backgrounds to new physics searches. For corrections beyond the one-loop level and
We present a new approach for obtaining very precise integration results for infrared vertex and box diagrams, where the integration is carried out directly without performing any analytic integration of Feynman parameters. Using an appropriate numer