ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical multi-loop integrals and applications

58   0   0.0 ( 0 )
 نشر من قبل Ayres Freitas
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Ayres Freitas




اسأل ChatGPT حول البحث

Higher-order radiative corrections play an important role in precision studies of the electroweak and Higgs sector, as well as for the detailed understanding of large backgrounds to new physics searches. For corrections beyond the one-loop level and involving many independent mass and momentum scales, it is in general not possible to find analytic results, so that one needs to resort to numerical methods instead. This article presents an overview over a variety of numerical loop integration techniques, highlighting their range of applicability, suitability for automatization, and numerical precision and stability. In a second part of this article, the application of numerical loop integration methods in the area of electroweak precision tests is illustrated. Numerical methods were essential for obtaining full two-loop predictions for the most important precision observables within the Standard Model. The theoretical foundations for these corrections will be described in some detail, including aspects of the renormalization, resummation of leading loop contributions, and the evaluation of the theory uncertainty from missing higher orders.



قيم البحث

اقرأ أيضاً

106 - S. Borowka , G. Heinrich , S. Jahn 2017
We briefly review numerical methods for calculations beyond one loop and then describe new developments within the method of sector decomposition in more detail. We also discuss applications to two-loop integrals involving several mass scales.
SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3. 0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability.
189 - F.Yuasa , T.Ishikawa , Y.Kurihara 2011
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a fully numerical way, our approach is applicable to one-, two- and multi-loop diagrams. Without any analytic treatment it can compute diagrams with not only real masses but also complex masses for the internal particles. As concrete examples we present numerical results of a scalar one-loop box integral with complex masses and two-loop planar and non-planar box integrals with masses. We discuss the quality of our numerical computation by comparisons with other methods and also propose a self consistency check.
130 - A.V. Smirnov , M. Tentyukov 2010
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
We discuss briefly the first numerical implementation of the Loop-Tree Duality (LTD) method. We apply the LTD method in order to calculate ultraviolet and infrared finite multi-leg one-loop Feynman integrals. We attack scalar and tensor integrals wit h up to six legs (hexagons). The LTD method shows an excellent performance independently of the number of external legs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا