ترغب بنشر مسار تعليمي؟ اضغط هنا

Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals

131   0   0.0 ( 0 )
 نشر من قبل Tentyukov Mikhail
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.



قيم البحث

اقرأ أيضاً

We evaluate a Laurent expansion in dimensional regularization parameter $epsilon=(4-d)/2$ of all the master integrals for four-loop massless propagators up to transcendentality weight twelve, using a recently developed method of one of the present co authors (R.L.) and extending thereby results by Baikov and Chetyrkin obtained at transcendentality weight seven. We observe only multiple zeta values in our results. Therefore, we conclude that all the four-loop massless propagator integrals, with any integer powers of numerators and propagators, have only multiple zeta values in their epsilon expansions up to transcendentality weight twelve.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
124 - R.N. Lee , V.A. Smirnov 2010
We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transc endentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm.
SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3. 0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability.
We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimension al regulator up to 8$^{text{th}}$ power, with coefficients expressed in terms of harmonic polylogarithms. As a basis of master integrals we choose integrals with integrands that only have logarithmic poles - called $d$log forms. This choice greatly facilitates the subsequent computation via the method of differential equations. We detail how this basis is obtained via an improved algorithm originally developed by one of the authors. We provide a public implementation of this algorithm. We explain how the algorithm is naturally applied in the context of unitarity. In addition, we classify our $d$log forms according to their soft and collinear properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا