ﻻ يوجد ملخص باللغة العربية
A purely numerical method, Direct ComputationMethod is applied to evaluate Feynman integrals. This method is based on the combination of an efficient numerical integration and an efficient extrapolation. In addition, high-precision arithmetic and parallelization technique can be used in this method if required. We present the recent progress in development of this method and show results such as one-loop 5-point and two-loop 3-point integrals.
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a
A new approach to compute Feynman Integrals is presented. It relies on an integral representation of a given Feynman Integral in terms of simpler ones. Using this approach, we present, for the first time, results for a certain family of non-planar fi
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
We present pySecDec, a new version of the program SecDec, which performs the factorisation of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program
A method for reducing Feynman integrals, depending on several kinematic variables and masses, to a combination of integrals with fewer variables is proposed. The method is based on iterative application of functional equations proposed by the author.