ﻻ يوجد ملخص باللغة العربية
When the search algorithm QuickSelect compares keys during its execution in order to find a key of target rank, it must operate on the keys representations or internal structures, which were ignored by the previous studies that quantified the execution cost for the algorithm in terms of the number of required key comparisons. In this paper, we analyze running costs for the algorithm that take into account not only the number of key comparisons but also the cost of each key comparison. We suppose that keys are represented as sequences of symbols generated by various probabilistic sources and that QuickSelect operates on individual symbols in order to find the target key. We identify limiting distributions for the costs and derive integral and series expressions for the expectations of the limiting distributions. These expressions are used to recapture previously obtained results on the number of key comparisons required by the algorithm.
Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represente
In a continuous-time setting, Fill (2010) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by QuickSort, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution,
The analyses of many algorithms and data structures (such as digital search trees) for searching and sorting are based on the representation of the keys involved as bit strings and so count the number of bit comparisons. On the other hand, the standa
Using a recursive approach, we obtain a simple exact expression for the L^2-distance from the limit in Regniers (1989) classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a
Strong negative dependence properties have recently been proved for the symmetric exclusion process. In this paper, we apply these results to prove convergence to the Poisson and normal distributions for various functionals of the process.