ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributional Limits for the Symmetric Exclusion Process

254   0   0.0 ( 0 )
 نشر من قبل Thomas Liggett
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas M. Liggett




اسأل ChatGPT حول البحث

Strong negative dependence properties have recently been proved for the symmetric exclusion process. In this paper, we apply these results to prove convergence to the Poisson and normal distributions for various functionals of the process.



قيم البحث

اقرأ أيضاً

We study mixing times of the symmetric and asymmetric simple exclusion process on the segment where particles are allowed to enter and exit at the endpoints. We consider different regimes depending on the entering and exiting rates as well as on the rates in the bulk, and show that the process exhibits pre-cutoff and in some cases cutoff. Our main contribution is to study mixing times for the asymmetric simple exclusion process with open boundaries. We show that the order of the mixing time can be linear or exponential in the size of the segment depending on the choice of the boundary parameters, proving a strikingly different (and richer) behavior for the simple exclusion process with open boundaries than for the process on the closed segment. Our arguments combine coupling, second class particle and censoring techniques with current estimates. A novel idea is the use of multi-species particle arguments, where the particles only obey a partial ordering.
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process, a model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol where the system is initialized in a pure product state of $M$ particles, and focus on the late-time distribution of Renyi-$q$ entropies for a subsystem of size $ell$. By means of a Coulomb gas approach from Random Matrix Theory, we compute analytically the large-deviation function of the entropy in the thermodynamic limit. For $q>1$, we show that, depending on the value of the ratio $ell/M$, the entropy distribution displays either two or three distinct regimes, ranging from low- to high-entanglement. These are connected by points where the probability density features singularities in its third derivative, which can be understood in terms of a transition in the corresponding charge density of the Coulomb gas. Our analytic results are supported by numerical Monte Carlo simulations.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r esults, where rates at the boundaries are comparable to the bulk ones, we show how macroscopic fluctuations are modified when the boundary rates are slower by an order of inverse of the system length.
We consider the symmetric exclusion process on the $d$-dimensional lattice with translational invariant and ergodic initial data. It is then known that as $t$ diverges the distribution of the process at time $t$ converges to a Bernoulli product measu re. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein $bar d$-distance. The proof is based on the analysis of a two species exclusion process with annihilation.
We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the time scale $N^{1+a}$ the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the Liggett boundaries that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy--entropy flux pairs and a coupling argument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا