ﻻ يوجد ملخص باللغة العربية
The analyses of many algorithms and data structures (such as digital search trees) for searching and sorting are based on the representation of the keys involved as bit strings and so count the number of bit comparisons. On the other hand, the standard analyses of many other algorithms (such as Quicksort) are performed in terms of the number of key comparisons. We introduce the prospect of a fair comparison between algorithms of the two types by providing an average-case analysis of the number of bit comparisons required by Quicksort. Counting bit comparisons rather than key comparisons introduces an extra logarithmic factor to the asymptotic average total. We also provide a new algorithm, BitsQuick, that reduces this factor to constant order by eliminating needless bit comparisons.
Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represente
In a continuous-time setting, Fill (2010) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by QuickSort, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution,
When the search algorithm QuickSelect compares keys during its execution in order to find a key of target rank, it must operate on the keys representations or internal structures, which were ignored by the previous studies that quantified the executi
Using a recursive approach, we obtain a simple exact expression for the L^2-distance from the limit in Regniers (1989) classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a
We give upper and lower asymptotic bounds for the left tail and for the right tail of the continuous limiting QuickSort density f that are nearly matching in each tail. The bounds strengthen results from a paper of Svante Janson (2015) concerning the