ﻻ يوجد ملخص باللغة العربية
In a continuous-time setting, Fill (2010) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by QuickSort, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution, but proved little about that limiting random variable Y -- not even that it is nondegenerate. We establish the nondegeneracy of Y. The proof is perhaps surprisingly difficult.
Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represente
When the search algorithm QuickSelect compares keys during its execution in order to find a key of target rank, it must operate on the keys representations or internal structures, which were ignored by the previous studies that quantified the executi
The analyses of many algorithms and data structures (such as digital search trees) for searching and sorting are based on the representation of the keys involved as bit strings and so count the number of bit comparisons. On the other hand, the standa
Using a recursive approach, we obtain a simple exact expression for the L^2-distance from the limit in Regniers (1989) classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a
We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of